Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 195-205

Article title

Budowa rzęsek - od ultrastruktury do funkcji

Content

Title variants

EN
Motile cilia - from ultrastructure to function

Languages of publication

PL EN

Abstracts

PL
Rzęski są strukturami zachowanymi w toku ewolucji, występującymi u większości Eukaryota. Ze względu na strukturę i pełnione funkcje wyróżnia się dwa typy rzęsek: nieruchome rzęski pierwotne, tworzone w fazie spoczynkowej cyklu komórkowego oraz rzęski ruchome. Rzęski pierwotne są odpowiedzialne za odbieranie i przekazywanie sygnałów ze środowiska do wnętrza komórki, natomiast rzęski ruchome umożliwiają ruch pojedynczych komórek, a w organizmach wielokomórkowych, w tym u człowieka, przemieszczanie wydzielin lub drobin wzdłuż powierzchni komórek nabłonka wyścielającego m.in. drogi oddechowe, jajowód i komory mózgowia. Szkielet obu typów rzęsek, tzw. aksomena, zbudowany jest z dziewięciu obwodowych par mikrotubul. Rzęski ruchome mają dodatkowo dwie mikrotubule centralne, które wraz z przyłączonymi do nich kompleksami białkowymi tworzą kompleks pary centralnej, oraz makrokompleksy białek przyłączone do mikrotubul obwodowych. Makrokompleksy te są rozmieszczone periodycznie wzdłuż mikrotubul obwodowych, tworząc wzór powtarzający się co 96 nm. W każdym powtórzeniu znajdują się cztery zewnętrzne ramiona dyneinowe, siedem wewnętrznych ramion dyneinowych, trzy promienie łączące, po jednym kompleksie N-DRC i MIA, oraz inne, mniejsze kompleksy. Skoordynowane działanie tych makrokompleksów jest niezbędne do prawidłowego ruchu rzęsek.
EN
Cilia are highly evolutionarily conserved structures, assembled by most of the eukaryotic cells. Because of the differences in the ultrastructure and function, cilia are divided into two categories: immotile primary cilia that function as antennae and receive signals from the environment and transmit them into the cell, and motile cilia, which enable motility of the single cell. In multicellular organisms including humans the coordinated beating of motile cilia shifts fluids or particles along the surface of the cell in the respiratory tracks, Fallopian tube or brain ventricles. Both primary and motile cilia are supported by a microtubular skeleton, the axoneme, composed of nine periph- eral microtubule doublets. Additionally, motile cilia have a pair of central microtubules with their appendages, the so-called central pair (CP) complex, and macrocomplexes that are periodically attached to the microtubules of the peripheral doublets forming a specific pattern along the microtubules that repeats every 96 nm. The 96-nm repeat contains 4 outer and 7 inner dynein arms, 3 radial spokes, a single nexin-dynein regulatory complex and a modifier of inner arms as well as other minor complexes. The coordinated action of these macrocomplexes is indispensable for proper cilia beating.

Journal

Year

Volume

67

Issue

1

Pages

195-205

Physical description

Dates

published
2018

Contributors

  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
author
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland

References

  • Adams G. M., Huang, B., Piperno, G., Luck, D. J., 1981. Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants. J. Cell Biol. 91, 69-76.
  • Antony D., Becker-Heck A., Zariwala M. A., Schmidts M., Onoufriadis A., Forouhan M., Wilson R., Taylor-Cox T., Dewar A., Jackson C., Goggin P., Loges N.T., Olbrich H. i współaut., 2013. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 34, 462-472.
  • Awata J., Song K., Lin J., King S. M., Sanderson M. J., Nicastro D., Witman G. B., 2015. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol. Biol. Cell. 26, 1-39.
  • Barber C. F., Heuser T., Carbajal-Gonzalez B. I., Botchkarev V. V., Nicastro D., 2012. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol. Biol. Cell 23, 111-120.
  • Bower R., Tritschler D., Vanderwaal K., Perrone C. A, Muelle, J., Fox L., Sale W. S., Porter M. E., 2013. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol. Biol. Cell 24, 1134-1152.
  • Brokaw C. J., 2009. Thinking about flagellar oscillation. Cell Motil. Cytoskeleton 66, 425-436.
  • Brown J. M., Dipetrillo C. G., Smith E. F., Witman, G. B., 2012. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J. Cell Sci. 125, 3904-3913.
  • Bui K. H., Yagi T., Yamamoto R., Kamiya R., Ishikawa T., 2012. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J. Cell Biol. 198, 913-925.
  • Carbajal-Gonzalez B. I., Heuser T., Fu X., Lin J., Smith B. W., Mitchell D. R., Nicastro D., 2013. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton 70, 101-120.
  • Casey D. M., Inaba K., Pazour G. J., Takada S., Wakabayashi K., Wilkerson C. G., Kamiya R., Witman G. B., 2003. DC3, the 21-kDa subunit of the outer dynein armdocking complex (ODA-DC), is a novel EF-hand protein important for assembly of both the outer arm and the ODA-DC. Mol. Biol. Cell 14, 3650-3663.
  • Dipetrillo C. G., Smith E. F., 2010. Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. J. Cell Biol. 189, 601-612.
  • Dymek E. E., Heuser T., Nicastro D., Smith E. F., 2011. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 22, 2520-2531.
  • Fliegauf M., Benzing T., Omran H., 2007. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880-893.
  • Gibbons I. R., 1981. Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107-124.
  • Goduti D. J., Smith E. F., 2012. Analyses of functional domains within the PF6 protein of the central apparatus reveal a role for PF6 sub-complex members in regulating flagellar beat frequency. Cytoskeleton 69, 179-194.
  • Heuser T., Raytchev M., Krell J., Porter M. E., Nicastro D., 2009. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921-933.
  • Heuser T., Barber C. F., Lin J., Krell J., Rebesco M., Porter M. E., Nicastro D., 2012a. Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc. Natl. Acad. Sci. USA 109, E2067-E2076.
  • Heuser T., Dymek E. E., Lin J., Smith E. F., Nicastro D., 2012b. The CSC connects three major axonemal complexes involved in dynein regulation. Mol. Biol. Cell 23, 3143-3155.
  • Horani A., Ferkol T. W., Dutcher S. K., Brody S. L., 2016. Genetics and biology of primary ciliary dyskinesia. Paediatr. Respir. Rev. 18, 18-24.
  • Horani A., Ferkol T. W., Shoseyov D., Wasserman M. G., Oren Y. S., Kerem B., Amirav I., Cohen-Cymberknoh M., Dutcher S. K., Brody S. L., Elpeleg O., Kerem E., 2013. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One 8, e59436.
  • Inaba K., 2015. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 4, 6.
  • Inaba Y., Shinohara K., Botilde Y., Nabeshima R., Takaoka K., Ajima R., Lamri L., Takeda H., Saga Y., Nakamura T., Hamada H., 2016. Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells 21, 728-739.
  • Ishikawa T., 2015. Cryo-electron tomography of motile cilia and flagella. Cilia 4, 3.
  • Ishikawa T., 2017. Axoneme structure from motile cilia. Cold Spring Harb Perspect Biol. 9, doi: 10.1101/cshperspect.a028076.
  • Jain R., Javidan-Nejad C., Alexander-Brett .J, Horani A., Cabellon M. C., Walter M. J., Brody S. L., 2012. Sensory functions of motile cilia and implication for bronchiectasis. Front Biosci. 4, 1088-1098.
  • Kamiya R., 2002. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol. 219, 115-155.
  • Kamiya R., Yagi T., 2014. Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zoolog. Sci. 31, 633-644.
  • King S. M., 2012. Integrated control of axonemal dynein AAA(+) motors. J. Struct. Biol. 179, 222-228.
  • King S. M., Patel-King R. S., 2015. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J. Biol. Chem. 290, 7388-7401.
  • Kott E., Duquesnoy P., Copin B., Legendre M., Dastot-Le Moal F., Montantin G., Jeanson L., Tamalet A., Papon J. F., Siffroi J. P., Rives N., Mitchell V., De Blic J., Coste A., Clement A., Escalier D., Touré A., Escudier E., Amselem S., 2012. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 958-964.
  • Koutoulis A., Pazour G. J., Wilkerson C. G., Inaba K., Sheng H., Takada S., Witman G. B., 1997. The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J. Cell Biol. 137, 1069-1080.
  • Kozminski K. G., Diener D. R., Rosenbaum J. L., 1993. High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil. Cytoskeleton 25, 158-170.
  • Lechtreck K. F., Witman G. B., 2007. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J. Cell Biol. 176, 473-482.
  • Lechtreck K. F., Van De Weghe J. C., Harris J. A., Liu P., 2017. Protein transport in growing and steady-state cilia. Traffic 18, 277-286.
  • Li J. B. Gerdes J. M., Haycraft C. J., Fan Y., Teslovich T. M., May-Simera H., Li H., Blacque O. E., Li L., Leitch C. C., Lewis R. A., Green J. S., Parfrey P. S., Leroux M. R., Davidson W. S., Beales P. L., Guay-Woodford L. M., Yoder B. K., Stormo G. D., Katsanis N., Dutcher S. K., 2004. Comparative genomics identifies a flagellar and basal body.proteome that includes the BBS5 human disease gene. Cell 117, 541-552.
  • Lin J., Heuser T., Carbajal-Gonzalez B. I., Song K., Nicastro D., 2012. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton 69, 88-100.
  • Lin Y. C., Niewiadomski P., Lin B., Nakamura H., Phua S. C., Jiao J., Levchenko A., Inoue T., Rohatgi R., Inoue T., 2013. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437-443.
  • Loges N.T., Olbrich H., Becker-Heck A., Häffner K., Heer A., Reinhard C., Schmidts M., Kispert A., Zariwala M.A., Leigh M.W., Knowles M.R., Zentgraf H., Seithe H., Nürnberg G., Nürnberg P., Reinhardt R., Omran H., 2009. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883-889.
  • Loreng T. D., Smith E. F., 2017. The central apparatus of cilia and eukaryotic flagella. Cold Spring Harb Perspect Biol. 9, doi: 10.1101/cshperspect.a028118.
  • McKenzie C. W., Craige B., Kroeger T. V., Finn R., Wyatt T. A., Sisson J. H., Pavlik J. A., Strittmatter L., Hendricks G. M., Witman G. B., Lee L., 2015. CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 26, 3140-3149.
  • Merveille A. C., Davis E.E., Becker-Heck A., Legendre M., Amirav I., Bataille G., Belmont J., Beydon N., Billen F., Clément A., Clercx C., Coste A., Crosbie R., De Blic J., Deleuze S. i współaut., 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72-78.
  • Mitchison H. M., Schmidts M., Loges N. T., Freshour J., Dritsoula A., Hirst R. A., O'callaghan C., Blau H., Al Dabbagh M., Olbrich H., Beales P. L., Yagi T., Mussaffi H., Chung E. M., Omran H., Mitchell D. R., 2012. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 44, 381-389.
  • Mitchison T. J., Mitchison H. M., 2010. Cell biology: How cilia beat. Nature 463, 308-309.
  • Moore D.J., Onoufriadis A., Shoemark A., Simpson M.A., Zur Lage P.I., De Castro S.C., Bartoloni L., Gallone G., Petridi S., Woollard W.J., Antony D., Schmidts M., Didonna T., Makrythanasis P., Bevillard J., Mongan N.P., Djakow J. i współaut., 2013. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 346-356.
  • Nicastro D., Schwartz C., Pierson J., Gaudette R., Porter M. E., Mcintosh J. R., 2006. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944-948.
  • Nicastro D., Fu X., Heuser T., Tso A., Porter M. E., Linck R. W., 2011. Cryoelectron tomography reveals conserved features of doublet microtubules in flagella. Proc. Natl. Acad. Sci. USA 108, E845-E853.
  • Oda T. Yanagisawa H., Kamiya R., Kikkawa M., 2014a. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857-860.
  • Oda T., Yanagisawa H., Yagi T., Kikkawa M., 2014b. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. J. Cell Biol. 204, 807-819.
  • Oda T., Abe T., Yanagisawa H., Kikkawa M., 2016. Docking-complex-independent alignment of Chlamydomonas outer dynein arms with 24-nm periodicity in vitro. J. Cell Sci. 8, 1547-1551.
  • Omran H., Kobayashi D., Olbrich H., Tsukahara T., Loges N.T., Hagiwara H., Zhang Q., Leblond G., O'toole E., Hara C., Mizuno H., Kawano H., Fliegauf M., Yagi T., Koshida S., Miyawaki A., Zentgraf H., Seithe H., Reinhardt R., Watanabe Y., Kamiya R., Mitchell D. R., Takeda H., 2008. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 456, 611-616.
  • Onoufriadis A., Paff T., Antony D., Shoemark A., Micha D., Kuyt B., Schmidts M., Petridi S., Dankert-Roelse J. E., Haarman E. G., Daniels J. M., Emes R. D., Wilson R., Hogg C., Scambler P. J., Chung E. M., Uk10k, Pals G., Mitchison H. M., 2013. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum Genet. 1, 88-98.
  • Owa M., Furuta A., Usukura J., Arisaka F., King S. M., Witman G. B., Kamiya R., Wakabayashi K., 2014. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc. Natl. Acad. Sci. USA 111, 9461-9466.
  • Paff T., Loges N. T., Aprea I., Wu K., Bakey Z., Haarman E. G., Daniels J. M., Sistermans E. A., Bogunovic N., Dougherty G. W., Höben I. M., Große-Onnebrink J., Matter A., Olbrich H., Werner C., Pals G., Schmidts M., Omran H., Micha D., 2017. Mutations in pih1d3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am. J. Hum. Genet. 100, 160-168.
  • Panizzi J. R., Becker-Heck A., Castleman V. H., Al-Mutairi D. A., Liu Y, Loges N. T., Pathak N., Austin-Tse C., Sheridan E., Schmidts M., Olbrich H., Werner C., Häffner K., Hellman N., Chodhari R., Gupta A., Kramer-Zucker A., Olale F., Burdine R. D. i współaut., 2012. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714-719.
  • Pazour G. J., 2004. Comparative genomics: prediction of the ciliary and basal body proteome. Curr. Biol. 14, R575-R577.
  • Pazour G. J., Agrin N., Leszyk J., Witman G. B., 2005. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103-113.
  • Pigino G., Ishikawa T., 2012. Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture 2, 50-58.
  • Pigino G., Bui K. H., Maheshwari A., Lupetti P., Diener D., Ishikawa T., 2011. Cryoelectron tomography of radial spokes in cilia and flagella. J. Cell Biol. 195, 673-687.
  • Piperno G., Mead K., Ledizet M., Moscatelli A., 1994. Mutations in the dynein regulatory complex alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes. J. Cell Biol. 125, 1109-1117.
  • Porter M. E., Power J., Dutcher S. K., 1992. Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms. J. Cell Biol., 118, 1163-1176.
  • Rupp G., O'toole E., Porter M. E., 2001. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol. Biol. Cell 12, 739-751.
  • Serafini S. M., Michaelson E. D., 1977. Length and distribution of cilia in human and canine airways. Bull. Eur. Physiopathol. Respir. 13, 551-559.
  • Song K., Awata J., Tritschler D., Bower R., Witman G. B., Porter M. E., Nicastro D., 2015. In situ localization of N and C termini of subunits of the flagellar nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography. J. Biol. Chem. 290, 5341-5353.
  • Sui H., Downing K. H., 2006. Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442, 475-478.
  • Takada S., Wilkerson C. G., Wakabayashi K., Kamiya R., Witman G. B., 2002. The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. Mol. Biol. Cell 13, 1015-1029.
  • Takao D., Verhey K. J., 2016. Gated entry into the ciliary compartment. Cell Mol Life Sci. 73, 119-127.
  • Tarkar A., Loges N.T., Slagle C.E., Francis R., Dougherty G.W., Tamayo J.V., Shook B., Cantino M., Schwartz D., Jahnke C., Olbrich H., Werner C., Raidt J., Pennekamp P., Abouhamed M., Hjeij R., Köhler G., Griese M., Li Y., Lemke K. i współaut., 2013. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 45, 995-1003.
  • Urbanska P., Song K., Joachimiak E., Krzemien-Ojak L., Koprowski P., Hennessey T., Jerka-Dziadosz M., Fabczak H., Gaertig J., Nicastro D., Wloga D., 2015. The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Mol. Biol. Cell 26, 1463-1475.
  • Vasudevan K. K., Song K. K., Alford L. M., Sale W. E., Dymek E. E., Smith E. E., Hennessey T., Joachimiak E., Urbanska P., Wloga D., Dentler W., Nicastro D., Gaertig J., 2015. FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol. Biol. Cell 26, 696-710.
  • Wakabayashi K., Takada S., Witman G. B., Kamiya R., 2001. Transport and arrangement of the outer-dynein-arm docking complex in the flagella of Chlamydomonas mutants that lack outer dynein arms. Cell Motil. Cytoskeleton 48, 277-286.
  • Wallmeier J. Shiratori H., Dougherty G.W., Edelbusch C., Hjeij R., Loges N. T., Menchen T., Olbrich H., Pennekamp P., Raidt J., Werner C., Minegishi K., Shinohara K., Asai Y., Takaoka K., Lee C., Griese M., Memari Y., Durbin R., Kolb-Kokocinski A., Sauer S., Wallingford J. B., Hamada H., Omran H., 2016. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am. J. Hum. Genet. 99, 460-469.
  • Warner F. D., 1976. Ciliary inter-microtubule bridges. J. Cell Sci. 20, 101-114.
  • Yamamoto R., Song K., Yanagisawa H. A., Fox L., Yagi T., Wirschell M., Hirono M., Kamiya R., Nicastro D., Sale W. S., 2013. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J. Cell Biol. 201, 263-278.
  • Yamamoto R., Yanagisawa H.A., Yagi T., Kamiya R., 2008. Novel 44-kilodalton subunit of axonemal Dynein conserved from Chlamydomonas to mammals. Eukaryot. Cell 7, 154-161.
  • Yanagisawa H., Kamiya, R., 2001. Association between actin and light chains in Chlamydomonas flagellar inner-arm dyneins. Biochem. Biophys. Res. Commun. 288, 443-447.
  • Yanagisawa H., Mathis G., Oda T., Hirono M., Richey E. A., Ishikawa H., Marshall W. F., Kikkawa M., Qin H., 2014. FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol. Biol. Cell 25, 1472-1483.
  • Yang P., Diener D. R., Yang C., Kohno T., Pazour G. J., Dienes J. M., Agrin N. S., King S. M., Sale W. S., Kamiya R., Rosenbaum J. L., Witman G. B., 2006. Radial spoke proteins of Chlamydomonas flagella. J. Cell Sci. 119, 1165-1174.
  • Yoshiba S, Hamada H., 2014. Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet. 30, 10-17.
  • Zhang H., Mitchell D. R., 2004. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J. Cell Sci. 117, 4179-4188

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p195kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.