Preferences help
enabled [disable] Abstract
Number of results
2018 | 67 | 1 | 171-178
Article title

Na granicy ciałka podstawowego i rzęski - bariera rzęskowa

Title variants
On the basal body and cilium border - ciliary gate
Languages of publication
Wnętrze rzęski nie jest oddzielone od cytoplazmy błoną biologiczną, a mimo to ma unikatowy skład. Jest to możliwe dzięki działaniu zlokalizowanej u podstawy rzęski tzw. bariery rzęskowej. W skład tej struktury wchodzi dystalna część ciałka podstawowego, proksymalna część rzęski, umiejscowione na nich włókna przejściowe i łączniki Y, a także fragmenty przylegającej do nich błony komórkowej i rzęskowej. Tak złożona budowa umożliwia z jednej strony zatrzymanie u podstawy rzęski białek niepożądanych, a z drugiej, ułatwienie transportu do wnętrza rzęski elementów niezbędnych do jej budowy i funkcjonowania.
The intraciliary space is not separated from the cell cytoplasm by a membrane, but still it has a unique composition. It is possible due to the existence of so-called ciliary gate localized at the ciliary base. This structure is composed of the distal part of basal body, proximal portion of cilium, transition fibers and Y-links and adjacent part of the cell and ciliary membrane. This complex structure, on one hand retains the unwanted proteins at the ciliary base and, on the other hand, facilitates the intraciliary transport of cargos required for cilia formation and function.
Physical description
  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland
  • Čajánek L., Nigg E. A., 2014. Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc. Natl. Acad. Sci. USA 111, E2841-E2850.
  • Chih B., Liu P., Chinn Y., Chalouni C., Komuves L. G., Hass P. E., Sandoval W., Peterson A. S., 2011. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 14, 61-72
  • Craige B., Tsao C. C., Diener D. R., Hou Y., Lechtreck K. F., Rosenbaum J. L., Witman G. B., 2010. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927-940.
  • del Viso F., Huang F., Myers J., Chalfant M., Zhang Y., Reza N., Bewersdorf J., Lusk C. P., Khokha M. K., 2016. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev. Cell 38, 478-492.
  • Dishinger J. F., Kee H. L., Jenkins P. M., Fan S., Hurd T. W., Hammond J. W., Truong Y. N., Margolis B., Martens J. R., Verhey K. J., 2010. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703-710.
  • Dutcher S. K., O'Toole E. T., 2016. The basal bodies of Chlamydomonas reinhardtii. Cilia 5, 18.
  • Garcia-Gonzalo F. R., Reiter J. F., 2017. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9, doi: 10.1101/cshperspect.a028134.
  • Goetz S. C., Bangs F., Barrington C. L., Katsanis N., Anderson K.V., 2017. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 12, e0173399.
  • Ishikawa H., Kubo A., Tsukita S., Tsukita S., 2005. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat. Cell Biol. 7, 517-524.
  • Kee H. L., Dishinger J. F., Blasius T. L., Liu C. J., Margolis B., Verhey K. J., 2012. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431-437.
  • Takao D., Verhey K. J., 2016. Gated entry into the ciliary compartment. Cell. Mol. Life Sci. 73, 119-127.
  • Tanos B. E., Yang H. J., Soni R., Wang W. J., Macaluso F. P., Asara J. M., Tsou M. F., 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 227, 163-168.
  • Tateishi K., Yamazaki Y., Nishida T., Watanabe S., Kunimoto K., Ishikawa H., Tsukita S., 2013. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J. Cell Biol. 203, 417-425.
  • Vannuccini E., Paccagnini E., Cantele F., Gentile M., Dini D., Fino F., Diener D., Mencarelli C., Lupetti P., 2016. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. J. Cell Sci. 129, 2064-2074.
  • Wei Q., Xu Q., Zhang Y., Li Y., Zhang Q., Hu Z., Harris P. C., Torres V. E., Ling K., Hu J., 2013. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat. Commun. 4, 2750.
  • Wloga D., Frankel J., 2012. From molecules to morphology: cellular organization of Tetrahymena thermophila. Methods Cell Biol. 109, 83-140.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.