Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 151-162

Article title

Budowa ciałka podstawowgo i centrioli

Authors

Content

Title variants

EN
Structure of basal body and centriole

Languages of publication

PL EN

Abstracts

PL
Ciałko podstawowe i centriola to struktury homologiczne, których zrąb stanowi dziewięć mikrotubularnych tripletów. Mikrotubulom ciałka podstawowego/centrioli towarzyszą liczne struktury mikrotubularne i niemikrotubularne. Ich obecność nie tylko powoduje polaryzację ciałka podstawowego i centrioli, lecz także umożliwia ich prawidłowe funkcjonowanie. Przypuszcza się, że ciałka podstawowe występowały już u ostatniego wspólnego przodka eukariontów, tzw. LECA, a ich budowa i funkcja okazały się tak wydajne, że nie zmieniły się znacząco w toku ewolucji. Ciałka podstawowe i centriole odgrywają istotną rolę w komórce, a zaburzenia ich liczby, struktury lub lokalizacji obserwuje się m.in. w licznych nowotworach, chorobach układu nerwowego czy złożonych zespołach wieloobjawowych zwanych ciliopatiami.
EN
Basal body and centriole are homologous structures, build of nine triplet microtubules. The basal body/centriole microtubular scaffold is accompanied by numerous structures both microtubular and non-microtubular, which not only cause basal body/centriole polarization but also allow its proper functioning. It is assumed that basal bodies were present in last common eukaryotic ancestor, so-called LECA, and their structure and function appeared such efficient, that they did not change significantly in evolution.
Basal bodies and centrioles play an important role in the cell and the abnormalities in their number, structure or location are observed in numerous cancers, neuropathies and ciliopathies.

Keywords

Journal

Year

Volume

67

Issue

1

Pages

151-162

Physical description

Dates

published
2018

Contributors

  • Pracownia Cytoszkieletu i Biologii Rzęsek, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego, PAN, Pasteura 3, Warszawa, Polska
  • Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland

References

  • Andersen J. S., Wilkinson C. J., Mayor T., Mortensen P., Nigg E. A., Mann M., 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570-574.
  • Anderson R. G. T., 1972. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell Biol. 54, 246-265.
  • Azimzadeh J., Hergert P., Delouvée A., Euteneuer U., Formstecher E., Khodjakov A., Bornens M., 2009. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J. Cell Biol. 185, 101-114.
  • Banterle N., Gönczy P., 2017. Centriole biogenesis: from identifying the characters to understanding the plot. Annu. Rev. Cell Dev. Biol. 33, 23-49.
  • Bayless B. A., Galati D. F., Pearson C. G., 2016. Tetrahymena basal bodies. Cilia 5, 1..
  • Carvalho-Santos Z., Azimzadeh J., Pereira-Leal J. B., Bettencourt-Dias M., 2011. Evolution: Tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194, 165-75. Erratum in: J. Cell Biol. 2011, 195, 341.
  • Clare D. K., Magescas J., Piolot T., Dumoux M., Vesque C., Pichard E., Dang T., Duvauchelle B., Poirier F., Delacour D., 2014. Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat. Commun. 5, 4888.
  • Durcan T. M., Halpin E. S., Rao T., Collins N. S., Tribble E. K., Hornick J. E., Hinchcliffe E. H., 2008. Tektin 2 is required for central spindle microtubule organization and the completion of cytokinesis. J. Cell Biol. 181, 595-603.
  • Dutcher S. K., 2003. Long-lost relatives reappear: identification of new members of the tubulin superfamily. Curr. Opin. Microbiol. 6, 634-640.
  • Dutcher S. K., O'Toole E. T., 2016. The basal bodies of Chlamydomonas reinhardtii. Cilia. 5, 18.
  • Firat-Karalar E. N., Sante J., Elliott S., Stearns T., 2014. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J. Cell Sci. 127, 4128-4133.
  • Frankel J., 2000. Cell biology of Tetrahymena thermophila. Meth. Cell Biol. 62, 27-125.
  • Galati D. F., Bonney S., Kronenberg Z., Clarissa C., Yandell M., Elde N.C., Jerka-Dziadosz M., Giddings T. H., Frankel J., Pearson C. G., 2014. DisAp-dependent striated fiber elongation is required to organize ciliary arrays. J. Cell Biol. 207, 705-715.
  • Garcia G. 3rd, Reiter J. F., 2016. A primer on the mouse basal body. Cilia 5, 17.
  • Geimer S., Melkonian M., 2005. Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot. Cell 4, 1253-1263.
  • Guichard P., Chrétien D., Marco S., Tassin A. M., 2010. Procentriole assembly revealed by cryo-electron tomography. EMBO J. 29, 1565-1572.
  • Hamel V., Steib E., Hamelin R., Armand F., Borgers S., Flückiger I., Busso C., Olieric N., Sorzano C. O. S., Steinmetz M. O., Guichard P., Gönczy P., 2017. Identification of Chlamydomonas central core centriolar proteins reveals a role for human WDR90 in ciliogenesis. Curr. Biol. 27, 2486-2498.
  • Hilbert M., Noga A., Frey D., Hamel V., Guichard P., Kraatz S. H., Pfreundschuh M., Hosner S., Flückiger I., Jaussi R., Wieser M. M., Thieltges K. M., Deupi X., Müller D. J., Kammerer R. A., Gönczy P., Hirono M., Steinmetz M. O., 2016. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat. Cell Biol. 18, 393-403.
  • Ibrahim R., Messaoudi C., Chichon F. J., Celati C., Marco S., 2009. Electron tomography study of isolated human centrioles. Microsc. Res. Tech. 72, 42-48.
  • Jakobsen L., Vanselow K., Skogs M., Toyoda Y., Lundberg E., Poser I., Falkenby L. G., Bennetzen M., Westendorf J., Nigg E. A., Uhlen M., Hyman A. A., Andersen J. S., 2011. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520-1535.
  • Keller L. C., Romijn E. P., Zamora I., Yates J. R. 3rd, Marshall W. F., 2005. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15, 1090-1098.
  • Kilburn C. L., Pearson C. G., Romijn E. P., Meehl J. B., Giddings T. H. Jr, Culver B. P., Yates J. R. 3rd, Winey M., 2007. New Tetrahymena basal body protein components identify basal body domain structure. J. Cell Biol. 178, 905-912. Erratum in: J. Cell Biol. 2007, 179, 167.
  • Koblenz B., Schoppmeier J., Grunow A., Lechtreck K. F., 2003. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J. Cell Sci. 116, 2635-2646.
  • Kunimoto K., Yamazaki Y., Nishida T., Shinohara K., Ishikawa H., Hasegawa T., Okanoue T., Hamada H., Noda T., Tamura A., Tsukita S., Tsukita S., 2012. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148, 189-200.
  • Li S., Fernandez J. J., Marshall W. F., Agard D. A., 2012. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J. 31, 552-562.
  • Linck R., Fu X., Lin J., Ouch C., Schefter A., Steffen W., Warren P., Nicastro D., 2014. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J. Biol. Chem. 289, 17427-17444.
  • Meunier A., Azimzadeh J., 2016. Multiciliated cells in animals. Cold Spring Harb Perspect Biol 8, pii: a028233.
  • Oakley B. R., Paolillo V., Zheng Y., 2015. γ-Tubulin complexes in microtubule nucleation and beyond. Mol. Biol. Cell 26, 2957-2962.
  • O'Toole E. T., Giddings T. H., McIntosh J. R., Dutcher S. K., 2003. Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. Mol. Biol. Cell 14, 2999-3012.
  • Paintrand M., Moudjou M., Delacroix H., Bornens M., 1992. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107-128.
  • Snider N. T., Omary M. B. 2014. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 15, 163-177.
  • Stemm-Wolf A. J., Morgan G., Giddings T. H. Jr, White E. A., Marchione R., McDonald H. B., Winey M., 2005. Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family. Mol. Biol. Cell 16, 3606-3619
  • Tassin A. M., Lemullois M., Aubusson-Fleury A., 2016. Paramecium tetraurelia basal body structure. Cilia. 5, 6.
  • Tateishi K., Yamazaki Y., Nishida T., Watanabe S., Kunimoto K., Ishikawa H., Tsukita S., 2013. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J. Cell Biol. 203, 417-425.
  • Uzbekov R., Prigent C., 2007. Clockwise or anticlockwise? Turning the centriole triplets in the right direction! FEBS Lett. 581, 1251-1254.
  • Vladar E. K., Stearns T., 2007. Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31-42.
  • Winey M., O'Toole E., 2014. Centriole structure. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, pii: 20130457.
  • Włoga D., Frankel J., 2012. From molecules to morphology: cellular organization of Tetrahymena thermophila. Meth. Cell Biol. 109, 83-140.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p151kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.