PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 1 | 139-149
Article title

Białka z rodziny +tip - "agenci" śledzący mikrotubule w rozwoju i plastyczności neuronów

Authors
Content
Title variants
EN
Tip family proteins - microtubule tracking "agents" in the development and plasticity of neurons
Languages of publication
PL EN
Abstracts
PL
Mikrotubule są jednym z elementów cytoszkieletu a ich rolą jest zapewnienie prawidłowego transportu wewnątrzkomórkowego, utrzymanie kształtu komórek oraz generowanie sił mechanicznych. Aby mikrotubule mogły pełnić swoje funkcje komórkowe konieczna jest liczna grupa białek je wiążących, odpowiedzialnych za ich polimeryzację, stabilizację i dynamikę. Należą do nich między innymi białka śledzące koniec plus mikrotubul (ang. microtubule plus-end tracking proteins, +TIP). W ciągu ostatnich 10 lat poczyniono ogromne postępy w rozumieniu zarówno podstawowych aspektów działania tych białek na poziomie molekularnym, jak i ich udziału w rozwoju i plastyczności komórek nerwowych. Celami niniejszego artykułu są: zapoznanie czytelnika z podstawowymi informacjami na temat białek +TIP oraz z rolą jaką pełnią one w neuronach w trakcie powstawania aksonu, dendrytów i plastyczności synaptycznej.
EN
The role of microtubules, one of the three components of cytoskeleton, is to ensure proper intracellular transport, maintain cell shape and generate mechanical forces. In order to fulfill by microtubules their cellular functions, a large number of binding proteins responsible for their polymerization, stabilization or dynamics are needed. These include inter alia plus-end tracking proteins (+TIPs). Over the past 10 years, a great progress has been made in terms of understanding both, the fundamental aspects of these molecules at molecular level and their contribution to the development and plasticity of nerve cells. The purpose of this article is to provide the readers the basic information about the +TIP proteins and the role they play in neurons in the formation of axon, dendrites and synaptic plasticity.
Journal
Year
Volume
67
Issue
1
Pages
139-149
Physical description
Dates
published
2018
Contributors
  • Międzynarodowy Instytut Biologii Molekularnej i Komórkowej, Trojdena 4, 02-109, Warszawa, Polska
  • International Institute of Molecular and Cell Biology in Warsaw, 4 Trojden Str., 02-109, Warsaw, Poland
References
  • Akhmanova A., Hoogenraad C. C., 2005. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47-54.
  • Alvarez V. A., Sabatini B. L., 2007. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79-97.
  • Bajer S., Kasprzak A. A., 2009. Plus end tracking proteins and their role in mitotic spindle organization. Post. Biochem. 55, 223-231.
  • Bearce E. A., Erdogan B., Lowery L. A., 2015. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front. Cell. Neurosci. 9, 241.
  • Bond J., Roberts E., Springell K., Lizarraga S. B., Lizarraga S., Scott S., Higgins J., Hampshire D. J., Morrison E. E., Leal G. F. i współaut., 2005. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353-355.
  • Buchman J. J., Tseng H.-C., Zhou Y., Frank C. L., Xie Z., Tsai L.-H., 2010. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386-402.
  • Buck K. B., Zheng J. Q., 2002. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358-9367.
  • Chen Y.-K., Hsueh Y.-P., 2012. Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J. Neurosci. 32, 1043-1055.
  • Chen Y., Dube C. M., Rice C. J., Baram T. Z., 2008. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28, 2903-2911.
  • Conde C., Caceres A., 2009. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319-332.
  • DeGeer J., Boudeau J., Schmidt S., Bedford F., Lamarche-Vane N., Debant A., 2013. Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin-1/DCC-mediated cortical axon outgrowth. Mol. Cell. Biol. 33, 739-751.
  • Diamantopoulos G. S., Perez F., Goodson H. V., Batelier G., Melki R., Kreis T. E., Rickard J. E., 1999. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144, 99-112.
  • Eom T.-Y., Stanco A., Guo J., Wilkins G., Deslauriers D., Yan J., Monckton C., Blair J., Oon E., Perez A. i współaut., 2014. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration. Dev. Cell 31, 677-689.
  • Falnikar A., Tole S., Baas P. W., 2011. Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Mol. Biol. Cell 22, 1561-1574.
  • Farkas L. M., Huttner W. B., 2008. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell Biol. 20, 707-715.
  • Farrer M. J., Hulihan M. M., Kachergus J. M., Dächsel J. C., Stoessl A. J., Grantier L. L., Calne S., Calne D. B., Lechevalier B., Chapon F. i współaut., 2009. DCTN1 mutations in Perry syndrome. Nat. Genet. 41, 163-165.
  • Galjart N., 2005. CLIPs and CLASPs and cellular dynamics. Nat. Rev. Mol. Cell. Biol. 6, 487-498.
  • Geraldo S., Khanzada U. K., Parsons M., Chilton J. K., Gordon-Weeks P. R., 2008. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat. Cell Biol. 10, 1181-1189.
  • Gouveia S. M., Akhmanova A., 2010. Cell and molecular biology of microtubule plus end tracking proteins: end binding proteins and their partners. Int. Rev. Cell Mol. Biol. 285, 1-74.
  • Grabham P. W., Seale G. E., Bennecib M., Goldberg D. J., Vallee R. B., 2007. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J. Neurosci. 27, 5823-5834.
  • Gu J., Firestein B. L., Zheng J. Q., 2008. Microtubules in dendritic spine development. J. Neurosci. 28, 12120-12124.
  • Hatanaka Y., Zhu Y., Torigoe M., Kita Y., Murakami F., 2016. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 92, 1-19.
  • Hirotsune S., Fleck M. W., Gambello M. J., Bix G. J., Chen A., Clark G. D., Ledbetter D. H., McBain C. J., Wynshaw-Boris A., 1998. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333-339.
  • Hotulainen P., Hoogenraad C. C., 2010. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619-629.
  • Hsieh P.-C., Chiang M.-L., Chang J.-C., Yan Y.-T., Wang F.-F., Chou Y.-C., 2012. DDA3 stabilizes microtubules and suppresses neurite formation. J. Cell Sci. 125, 3402-3411.
  • Hu X., Viesselmann C., Nam S., Merriam E., Dent E. W., 2008. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094-13105.
  • Hur E.-M., Saijilafu Lee B. D., Kim S.-J., Xu W.-L., Zhou F.-Q., 2011. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev. 25, 1968-1981.
  • Jaworski J., Hoogenraad C. C., Akhmanova A., 2008. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int. J. Biochem. Cell Biol. 40, 619-637.
  • Jaworski J., Kapitein L. C., Gouveia S. M., Dortland B. R., Wulf P. S., Grigoriev I., Camera P., Spangler S. A., Di Stefano P., Demmers J. i współaut., 2009. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85-100.
  • Jimenez-Mateos E. M., Paglini G., Gonzalez-Billault C., Caceres A., Avila J., 2005. End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. J. Neurosci. Res. 80, 350-359.
  • Ka M., Kim W.-Y., 2016. Microtubule-actin crosslinking factor 1 is required for dendritic arborization and axon outgrowth in the developing brain. Mol. Neurobiol. 53, 6018-6032.
  • Ka M., Jung E.-M., Mueller U., Kim W.-Y., 2014. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling. Dev. Biol. 395, 4-18.
  • Koester M. P., Müller O., Pollerberg G. E., 2007. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J. Neurosci. 27, 12590-12600.
  • Kononenko N. L., Claßen G. A., Kuijpers M., Puchkov D., Maritzen T., Tempes A., Malik A. R., Skalecka A., Bera S., Jaworski J. i współaut., 2017. Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration. Nat. Commun. 8, 14819.
  • Lansbergen G., Akhmanova A., 2006. Microtubule plus end: a hub of cellular activities. Traffic 7, 499-507.
  • Lazarus J. E., Moughamian A. J., Tokito M. K., Holzbaur E. L. F., 2013. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611.
  • Lee H., Engel U., Rusch J., Scherrer S., Sheard K., Van Vactor D., 2004. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42, 913-926.
  • Leterrier C., Dargent B., 2014. No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin. Cell Dev. Biol. 27, 44-51.
  • Levy J. R., Sumner C. J., Caviston J. P., Tokito M. K., Ranganathan S., Ligon L. A., Wallace K. E., LaMonte B. H., Harmison G. G., Puls I. i współaut., 2006. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J. Cell Biol. 172, 733-745.
  • Lipka J., Kuijpers M., Jaworski J., Hoogenraad C. C., 2013. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41, 1605-1612.
  • Liu Z., Steward R., Luo L., 2000. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat. Cell Biol. 2, 776-783.
  • Lowery L.A., Van Vactor D., 2009. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332-343.
  • Lowery L. A., Stout A., Faris A. E., Ding L., Baird M. A., Davidson M. W., Danuser G., Van Vactor D., 2013. Growth cone-specific functions of XMAP215 in restricting microtubule dynamics and promoting axonal outgrowth. Neural Develop. 8, 22.
  • Martínez-López M. J., Alcántara S., Mascaró C., Pérez-Brangulí F., Ruiz-Lozano P., Maes T., Soriano E., Buesa C., 2005. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol. Cell. Neurosci. 28, 599-612.
  • Marx A., Godinez W. J., Tsimashchuk V., Bankhead P., Rohr K., Engel U., 2013. Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Mol. Biol. Cell 24, 1544-1558.
  • Merriam E. B., Millette M., Lumbard D. C., Saengsawang W., Fothergill T., Hu X., Ferhat L., Dent E. W., 2013. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J. Neurosci. 33, 16471-16482.
  • Moughamian A. J., Holzbaur E. L. F., 2012. Dynactin is required for transport initiation from the distal axon. Neuron 74, 331-343.
  • Muley P. D., McNeill E. M., Marzinke M. A., Knobel K. M., Barr M. M., Clagett-Dame M., 2008. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev. Neurobiol. 68, 1441-1453.
  • Myers K. A., Baas P. W., 2007. Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J. Cell Biol. 178, 1081-1091.
  • Nadar V. C., Ketschek A., Myers K. A., Gallo G., Baas P. W., 2008. Kinesin-5 is essential for growth-cone turning. Curr. Biol. 18, 1972-1977.
  • Nagano T., Yoneda T., Hatanaka Y., Kubota C., Murakami F., Sato M., 2002. Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat. Cell Biol. 4, 495-501.
  • Neukirchen D., Bradke F., 2011. Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics. J. Neurosci. 31, 1528-1538.
  • Nwagbara B. U., Faris A. E., Bearce E. A., Erdogan B., Ebbert P. T., Evans M. F., Rutherford E. L., Enzenbacher T. B., Lowery L. A., 2014. TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types. Mol. Biol. Cell 25, 3350-3362.
  • Peng Y.-J., He W.-Q., Tang J., Tao T., Chen C., Gao Y.-Q., Zhang W.-C., He X.-Y., Dai Y.-Y., Zhu N.-C. i współaut., 2010. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum. J. Biol. Chem. 285, 24834-24844.
  • Perez F., Diamantopoulos G. S., Stalder R., Kreis T. E., 1999. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517-527.
  • Pfister A. S., Tanneberger K., Schambony A., Behrens J., 2012. Amer2 protein is a novel negative regulator of Wnt/β-catenin signaling involved in neuroectodermal patterning. J. Biol. Chem. 287, 1734-1741.
  • Purro S. A., Ciani L., Hoyos-Flight M., Stamatakou E., Siomou E., Salinas P. C., 2008. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J. Neurosci. 28, 8644-8654.
  • Rosenberg M. M., Yang F., Mohn J. L., Storer E. K., Jacob M. H., 2010. The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo. J. Neurosci. 30, 11073-11085.
  • Sayas C. L., Ávila J., 2014. Crosstalk between axonal classical microtubule-associated proteins and end binding proteins during axon extension: possible implications in neurodegeneration. J. Alzheimers Dis. 40 (Suppl. 1), S17-22.
  • Shi S.-H., Cheng T., Jan L.Y., Jan Y.-N., 2004. APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr. Biol. 14, 2025-2032.
  • Shih P.-Y., Lee S.-P., Chen Y.-K., Hsueh Y.-P., 2014. Cortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization. J. Cell Sci. 127, 3521-3534.
  • Shim S., Zheng J. Q., Ming G.-L., 2013. A critical role for STIM1 in filopodial calcium entry and axon guidance. Mol. Brain 6, 51.
  • Sudarov A., Gooden F., Tseng D., Gan W.-B., Ross M. E., 2013. Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour. EMBO Mol. Med. 5, 591-607.
  • Sweet E. S., Previtera M. L., Fernández J. R., Charych E. I., Tseng C.-Y., Kwon M., Starovoytov V., Zheng J. Q., Firestein B. L., 2011. PSD-95 alters microtubule dynamics via an association with EB3. J. Neurosci. 31, 1038-1047.
  • Swiech L., Blazejczyk M., Urbanska M., Pietruszka P., Dortland B. R., Malik A. R., Wulf P. S., Hoogenraad C. C., Jaworski J., 2011. CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology. J. Neurosci. 31, 4555-4568.
  • Tada T., Sheng M., 2006. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95-101.
  • Tsai J. W., Chen Y., Kriegstein A. R., Vallee R. B., 2005. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935-945.
  • Urbanska M., Blazejczyk M., Jaworski J., 2008. Molecular basis of dendritic arborization. Acta Neurobiol. Exp. 68, 264-288.
  • van de Willige D., Hoogenraad C. C., Akhmanova A., 2016. Microtubule plus-end tracking proteins in neuronal development. Cell. Mol. Life Sci. 73, 2053-2077.
  • van der Vaart B., Franker M. A. M., Kuijpers M., Hua S., Bouchet B. P., Jiang K., Grigoriev I., Hoogenraad C. C., Akhmanova A., 2012. Microtubule plus-end tracking proteins SLAIN1/2 and ch-TOG promote axonal development. J. Neurosci. 32, 14722-14728.
  • Weiner A. T., Lanz M. C., Goetschius D. J., Hancock W. O., Rolls M. M., 2016. Kinesin-2 and Apc function at dendrite branch points to resolve microtubule collisions. Cytoskelet 73, 35-44.
  • Wu Q., Liu J., Fang A., Li R., Bai Y., Kriegstein A. R., Wang X., 2014. The dynamics of neuronal migration. Adv. Exp. Med. Biol. 800, 25-36.
  • Wu X.-S., Lee S. H., Sheng J., Zhang Z., Zhao W.-D., Wang D., Jin Y., Charnay P., Ervasti J. M., Wu L.-G., 2016. Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses. Neuron 92, 1020-1035.
  • Xie Z., Moy L. Y., Sanada K., Zhou Y., Buchman J. J., Tsai L.-H. 2007. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56, 79-93.
  • Yang Y.-T., Wang C.-L., Van Aelst L., 2012. DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nat. Neurosci. 15, 1201-1210.
  • Yoon S. Y., Choi J. E., Huh J.-W., Hwang O., Lee H. S., Hong H. N., Kim D., 2005. Monastrol, a selective inhibitor of the mitotic kinesin Eg5, induces a distinctive growth profile of dendrites and axons in primary cortical neuron cultures. Cell Motil. Cytoskeleton 60, 181-190.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p139kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.