PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 1 | 121-130
Article title

Oddziaływanie białka prionowego z mikrotubulami

Content
Title variants
EN
Interaction of prion protein with microtubules
Languages of publication
PL EN
Abstracts
PL
Nieprawidłowo sfałdowane białko prionowe (PrPTSE) uważane jest za główny czynnik prowadzący do rozwoju zakaźnych chorób neurodegeneracyjnych, zwanych pasażowalnymi encefalopatiami gąbczastymi (TSE). Mechanizm konwersji fizjologicznej formy białka prionowego PrPC do patologicznej PrPTSE, jak i forma neurotoksyczna tego białka, nie zostały jak dotąd w pełni scharakteryzowane. W warunkach fizjologicznych PrPc występuje głównie zewnątrzkomórkowo, gdzie przyczepione jest za pomocą kotwicy GPI do powierzchni błony komórkowej. Znane są jednak, również zlokalizowane w cytoplazmie formy PrP, zwane cytoPrP. Co ciekawe, stężenie cytoPrP znacząco wzrasta w TSE. Badania ostatnich lat dowodzą, że nieprawidłowo zlokalizowane w cytoplazmie PrP może być czynnikiem neurotoksycznym, a mechanizm neurotoksyczności związany jest prawdopodobnie z bezpośrednim oddziaływaniem tej formy białka prionowego z tubuliną. Oddziaływanie to prowadzi do agregacji tubuliny, zahamowania formowania MT, rozpadu cytoszkieletu mikrotubularnego i w konsekwencji śmierci komórki. Stabilizacja MT, np. przez obniżenie poziomu ufosforylowania związanych z mikrotubulami białek MAP chroni neurony przed toksycznością cytoplazmatycznej formy PrP.
PL
Misfolded prion protein (PrP ) is known as a major agent leading to infectious neurodegenerative diseases, known as transmissible spongiform encephalopathies (TSE). The mechanism of conversion of the physiological form of prion protein (PrP C ) into the pathological PrP TSE as well as the identity of neurotoxic form of this protein is not fully characterized. Under physiological conditions, PrP C one, is predominantly extracellular, tethered to the plasma membrane surface through the GPI anchor. However, cytosolic forms of PrP, termed as cytoPrP have also been found. Interestingly, a significant increase in the concentration of cytoPrP is observed in TSE. Recently, it was shown that mislocalized PrP can be a neurotoxic agent. The mechanism of neurotoxicity might be linked to the direct interaction of this form of PrP with tubulin. This interaction leads to tubulin aggregation, inhibition of microtubules (MT) assembly, disruption of microtubular cytoskeleton and eventually cell death. MT stabilization, by decreasing the level of MAP phosphorylation, can protect neurons from toxic effect of cytosolic forms of PrP.
Journal
Year
Volume
67
Issue
1
Pages
121-130
Physical description
Dates
published
2018
Contributors
  • Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-973 Warszawa, Polska
  • Department of Biochemistry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-973 Warsaw, Poland
References
  • Aguzzi A., Baumann F., Bremer J., 2008. The prion's elusive reason for being. Annu. Rev. Neurosci. 31, 439-477.
  • Akhmanova A., Steinmetz M. O., 2008. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309-322.
  • Al-Bassam J., Ozer R. S., Safer D., Halpain S., Milligan R. A., 2002. MAP2 andtau bind longitudinally along the outer ridges of microtubule pro-tofilaments. J. Cell Biol. 157, 1187-1196.
  • Basler K., Oesch B., Scott M., Westaway D., Wälchli M., Groth D. F., McKinley M. P., Prusiner S. B., Weissmann C., 1986. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417-428.
  • Bautista M. J., Gutierrez J., Salguero F. J., Fernandez de Marco M. M., Romero-Trevejo J. L., Gomez-Villamandos J. C., 2006. BSE infection in bovine PrP transgenic mice leads to hyperphosphorylation of tau-protein. Vet. Microbiol. 115, 293-301.
  • Bendheim P. E., Brown H. R., Rudelli R. D., Scala L. J., Goller N. L., Wen G. Y., Kascsak R. J., Cashman N. R., Bolton D. C., 1992. Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149-156.
  • Biernat J., Gustke N., Drewes G., Mandelkow E. M., Mandelkow E., 1993. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11, 153-163.
  • Bragason B. T., Palsdottir A., 2005. Interaction of PrP with NRAGE, a protein involved in neuronal apoptosis. Mol. Cell. Neurosci. 29, 232-244.
  • Bramblett G. T., Goedert M., Jakes R., Merrick S. E., Trojanowski J. Q., Lee V. M., 1993. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10, 1089-1099.
  • Breuss M. W., Leca I., Gstrein T., Hansen A. H., Keays D. A., 2017. Tubulins and brain development - The origins of functional specification. Mol. Cell. Neurosci., doi: 10.1016/j.mcn.2017.03.002.
  • Brown D., Belichenko P., Sales J., Jeffrey M., Fraser J. R., 2001. Early loss of dendritic spines in murine scrapie revealed by confocal analysis. Neuroreport 12, 179-183.
  • Brown D. R., 2000. Altered toxicity of the prion protein peptide PrP106-126 carrying the Ala(117)--\>Val mutation. Biochem. J. 346, 785-791.
  • Brown D. R., Schmidt B., Kretzschmar H. A., 1998. Prion protein fragment interacts with PrP-deficient cells. J. Neurosci. Res. 52, 260-267.
  • Cassimeris L., Spittle C., 2001. Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163-226.
  • Chakrabarti O., Ashok A., Hegde R. S., 2009. Prion protein biosynthesis and its emerging role in neurodegeneration. Trends. Biochem. Sci. 34, 287-295.
  • Chakrabarti O., Hegde R. S., 2009. Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137, 1136-1147.
  • Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P., Autilio-Gambetti L., 1995. Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem. 270, 19173-19180.
  • Cross D., Dominguez J., Maccioni R. B., Avila J., 1991. MAP-1 and MAP-2 binding sites at the C-terminus of beta-tubulin. Studies with syn-thetic tubulin peptides. Biochemistry 30, 4362-4366.
  • Dent E. W., 2017. Of microtubules and memory: implications for microtubule dynamics indendrites and spines. Mol. Biol. Cell. 28, 1-8.
  • Downing K. H, Nogales E., 1998. New insights into microtubule structure and function from the atomic model of tubulin. Eur. Biophys. J. 27, 431-436.
  • Drechsel D. N, Hyman A. A, Cobb M. H, Kirschner M. W., 1992. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141-1154.
  • Forlenza O. V., de-Paula V. J., Diniz B. S., 2014. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem. Neurosc. 5, 443-450.
  • Grenier C., Bissonnette C., Volkov L., Roucou X., 2006. Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J. Neurochem. 97, 1456-1466.
  • Gu Y., Hinnerwisch J., Fredricks R., Kalepu S., Mishra R. S., Singh N., 2003. Identification of cryptic nuclear localization signals in the prion protein. Neurobiol. Dis. 12, 133-149.
  • Hachiya N. S., Watanabe K., Sakasegawa Y., Kaneko K., 2004a. Microtubulesassociated intracellular localization of the NH2-terminal cellular prion protein fragment. Biochem. Biophys. Res. Commun. 313, 818-823.
  • Hachiya N. S., Watanabe K., Yamada M., Sakasegawa Y., Kaneko K., 2004b. Anterograde and retrograde intracellular trafficking of fluorescent cellular prionprotein. Biochem. Biophys. Res. Commun. 315, 802-807.
  • Hawkins T., Mirigian M., Selcuk Yasar M., Ross J. L., 2010. Mechanics of microtubules. J. Biomech. 43, 23-30.
  • Hegde R. S., Mastrianni J. A., Scott M. R., Defea K. A., Tremblay P., Torchia M., Dearmond S. J., Prusiner S. B., Lingappa V. R. A., 1998. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827-834.
  • Heske J., Heller U., Winklhofer K. F., Tatzelt J., 2004. The C-terminal globular domain of the prion protein is necessary and sufficient for import into the endoplasmic reticulum. J. Biol. Chem. 279, 5435-5443.
  • Hornshaw M. P., McDermott J. R., Candy J. M., 1995. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621-629.
  • Janke C., 2014. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 18, 461-472.
  • Johnston A. R., Black C., Fraser J., Macleod N., 1997. Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurones. J. Physiol. 500, 1-15.
  • Jourdain L., Curmi P., Sobel A., Pantaloni D., Carlier M. F., 1997. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817-10821.
  • Kasai H., Matsuzaki M., Noguchi J., Yasumatsu N., Nakahara H., 2003. Structurestability-function relationships of dendritic spines. Trends Neurosci. 26, 360-368.
  • Kasai H., Fukuda M., Watanabe S., Hayashi-Takagi A., Noguchi J., 2010. Structural dynamics of dendritic spines in memory and cognition. Trends. Neurosci. 33, 121-129.
  • Keshet G. I., Bar-Peled O., Yaffe D., Nudel U., Gabizon R., 2000. The cellular prion protein colocalizes with the dystroglycan complex in the brain. J. Neurochem. 75, 1889-1897.
  • Kim S. J., Hegde R. S., 2002. Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol. Biol. Cell 13, 3775-3786.
  • Kim S. J., Rahbar R., Hegde R. S., 2001. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J. Biol. Chem. 276, 26132-26140.
  • Li X. L., Wang G. R., Jing Y. Y., Pan M. M., Dong C. F., Zhou R. M., Wang Z. Y., Shi Q., Gao C., Dong X. P., 2011. Cytosolic PrP induces apoptosis of cell by disrupting microtubule assembly. J. Mol. Neurosci. 43, 316-325.
  • Lopez C. D., Yost C. S., Prusiner S. B., Myers R. M., Lingappa V. R., 1990. Unusual topogenic sequence directs prion protein biogenesis. Science 248, 226-229.
  • Lowe J., Li H., Downing K. H., Nogales E., 2001. Refined structure of alpha betatubulin at 3.5 A resolution. J. Mol. Biol. 313, 1045-1057.
  • Ludueña R. F., 2013. A hypothesis on the origin and evolution of tubulin. Int. Rev. Cell Mol. Biol. 302, 41-185.
  • Lundberg P., Magzoub M., Lindberg M., Hällbrink M., Jarvet J., Eriksson L. E., Langel U., Gräslund A., 2002. Cell membrane translocation of the Nterminal (1-28) part of the prion protein. Biochem. Biophys. Res. Commun. 299, 85-90.
  • Ma J., Lindquist S., 2001. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc. Natl. Acad. Sci. USA 98, 14955-14960.
  • Ma J., Wollmann R., Lindquist S., 2002. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781-1785.
  • Maccioni R. B., Rivas C. I., Vera J. C., 1988. Differential interaction of syntheticpeptides from the carboxyl-terminal regulatory domain of tubuliny with microtubule-associated proteins. EMBO J. 7, 1957-1963.
  • Mange A., Crozet C., Lehmann S., Beranger F., 2004. Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin. J. Cell Sci. 117, 2411-2416.
  • Melki R., Kerjan P., Waller J. P., Carlier M. F., 1991. Pantaloni D. Interaction of microtubule-associated proteins with microtubules: yeast lysyl-and valyl-tRNA synthetases and tau 218-235 synthetic peptide asmodel systems. Biochemistry 30, 11536-11545.
  • Miesbauer M., Rambold A. S., Winklhofer K. F., Tatzelt J., 2010. Targeting of the prion protein to the cytosol: mechanisms and consequences. Curr. Issues. Mol. Biol. 12, 109-118.
  • Mironov A. Jr., Latawiec D., Wille H., Bouzamondo-Bernstein E., Legname G., Williamson R. A., Burton D., Dearmond S. J., Prusiner S. B., Peters P. J., 2003. Cytosolic prion protein in neurons. J. Neurosci. 23, 7183-7193.
  • Nieznanska H., Dudek E., Zajkowski T., Szczesna E., Kasprzak A. A., Nieznanski K., 2012. Prion protein impairs kinesin-driven transport. Biochem. Biophys. Res. Commun. 425, 788-793.
  • Nieznanski K., 2010. Interactions of prion protein with intracellular proteins: so manypartners and no consequences? Cell. Mol. Neurobiol. 30, 5, 653-666.
  • Nieznanski K., Nieznanska H., Skowronek K. J., Osiecka K. M., Stepkowski D., 2005. Direct interaction between prion protein and tubulin. Biochem. Biophys. Res. Commun. 334, 403-411.
  • Nieznanski K., Podlubnaya Z. A., Nieznanska H., 2006. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization. Biochem. Biophys. Res. Commun. 349, 391-399.
  • Nogales E., 2000. Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277-302.
  • Nogales E., Wolf S. G., Downing K. H., 1998. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199-203.
  • Orsi A., Fioriti L., Chiesa R., Sitia R., 2006. Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein. J. Biol. Chem. 281, 41, 30431-30438.
  • Osiecka K. M., Nieznanska H., Skowronek K. J., Karolczak J., Schneider G., Nieznanski K., 2009. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 77, 279-296.
  • Osiecka K. M., Nieznanska H., Skowronek K. J., Jozwiak J., Nieznanski K., 2011. Tau inhibits tubulin oligomerization induced by prion protein. Biochim. Biophys. Acta 1813, 1845-1853.
  • Parker A. L., Teo W. S., McCarroll J. A., Kavallaris M., 2017. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int. J. Mol. Sci.18, E1434.
  • Perez M., Rojo A. I., Wandosell F., Diaz-Nido J., Avila J. 2003. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Bioch. J. 372, 129-136.
  • Premzl M., Gready J. E., Jermiin L. S., Simonic T., Marshall Graves J. A., 2004. Evolution of vertebrate genes related to prion and Shadoo proteins-clues from comparative genomic analysis. Mol. Biol. Evol. 21, 2210-2231.
  • Prusiner S. B., 1998. Prions. Proc. Natl. Acad. Sci. USA 95, 13363-13383.
  • Rambold A. S., Miesbauer M., Rapaport D., Bartke T., Baier M., Winklhofer K. F., Tatzelt J., 2006. Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP. Mol. Biol. Cell 17, 8, 3356-3368.
  • Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K., 1997. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 413, 282-288.
  • Ramkumar A., Jong B. Y., Ori-McKenney K. M., 2017. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev. Dyn., doi: 10.1002/dvdy.24599.
  • Ring D. B., Johnson K. W., Henriksen E. J., Nuss J. M., Goff D., Kinnick T. R., Ma S. T., Reeder J. W., Samuels I., Slabiak T., Wagman A. S., Hammond M. E., Harrison S. D., 2003. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52, 588-595.
  • Rivera-Milla E., Oidtmann B., Panagiotidis C. H., Baier M., Sklaviadis T., Hoffmann R., Zhou Y., Solis G. P., Stuermer C. A., Málaga-Trillo E., 2006. Disparate evolution of prion protein domains and the distinct origin of Doppel- and prion-related loci revealed by fish-to-mammal comparisons. FASEB J. 20, 317-319.
  • Schiff P. B., Fant J., Horwitz S. B., 1979. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665-667.
  • Sikorska B., Liberski P. P., Sobów T., Budka H., Ironside J. W., 2009. Ultrastructural study of florid plaques in variant Creutzfeldt-Jakob disease: a comparison with amyloid plaques in kuru, sporadic Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker disease. Neuropathol. Appl. Neurobiol. 35, 46-59.
  • Schoenfeld T. A., Obar R. A., 1994. Diverse distribution and function of fibrous
  • microtubule-associated proteins in the nervous system. Int. Rev. Cytol. 151, 67-137.
  • Stahl N., Borchelt D. R., Hsiao K., Prusiner S. B., 1987. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229-240.
  • Šimić G., Babić Leko M., Wray S., Harrington C., Delalle I., Jovanov-Milošević N., bažadona D., Buée L., De Silva R., Di Giovanni G., Wischik C., Hof P. R., 2016. Tau protein hyperphosphorylation and aggregation in Alzheimer's disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6, 6.
  • Taylor D. R., Hooper N. M., 2006. The prion protein and lipid rafts. Mol. Memb. Biol. 23, 89-99.
  • Turk E., Teplow D. B., Hood L. E., Prusiner S. B.,1988. Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176, 21-30.
  • Wade R. H., 2009. On and around microtubules: an overview. Mol. Biotechnol. 43, 177-191.
  • Wang X., Bowers S. L., Wang F., Pu X.-A. A., Nelson R. J., Ma J., 2009. Cytoplasmic prion protein induces forebrain neurotoxicity. Biochim. Biophys. Acta. 1792, 6, 555-563.
  • Westermann S., Weber K., 2003. Post-translational modifications regulate microtubul function. Nat. Rev. Mo. Cell Biol., 4, 938-947.
  • Zajkowski T., Nieznanska H., Nieznanski K., 2015. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim. Biophys. Acta 1853, 2228-2239.
  • Zanusso G., Petersen R. B., Jin T., Jing Y., Kanoush R., ferrari S., Gambetti P., Singh N., 1999. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J. Biol. Chem. 274, 23396-23404.
  • Zhang D., Rogers G. C., Buster D. W., Sharp D. J., 2007. Three microtubule severing enzymes contribute to the 'Pacman-flux' machinery that moves chromosomes. J. Cell Biol. 177, 231-242.
  • Yost C. S., Lopez C. D., Prusiner S. B., Myers R. M., Lingappa V. R., 1990. Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein. Nature 343, 669-672.
  • Yedidia Y., Horonchik L., Tzaban S., Yanai A., Taraboulos A., 2001 Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J. 20, 5383-5391.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p121kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.