Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2018 | 67 | 1 | 109-119

Article title

Rola białek motorycznych w transporcie aksonalnym

Content

Title variants

EN
Role of motor proteins in axonal transport

Languages of publication

PL EN

Abstracts

PL
Transport wzdłuż mikrotubul aksonu i dendrytów jest niezbędny nie tylko dla zachowania ogólnej struktury i funkcjonowania komórki nerwowej, ale również całego układu nerwowego. W aksonie transport odbywa się dwukierunkowo, wzdłuż jednorodnie zorientowanych mikrotubul. Transport od ciała komórki w kierunku synapsy wymaga aktywności kinezyn i umożliwia dostarczanie białek (enzymów, cząsteczek sygnałowych, neurofilamentów, motorów molekularnych), pęcherzyków lipidowych i organelli, takich jak mitochondria do dystalnej części aksonu. Za transport w przeciwnym kierunku odpowiada dyneina cytoplazmatyczna, która przenosi zużyte lub niepoprawnie sfałdowane białka oraz cząsteczki sygnałowe do ciała komórki. W niniejszej pracy opisujemy elementy neuronu, które biorą udział transporcie aksonalnym oraz mechanizmy transportu. Przedstawiamy również czynniki, od których zależy transport aksonalny, włączając w to obecność białek adaptorowych (Milton/TRAK), białek MAP (białka związane z mikrotubulami) oraz modyfikacji potranslacyjnych tubuliny.
EN
Axonal transport is essential for maintaining the overall architecture of the brain and the entire nervous system. In the axon, the bidirectional transport takes place along uniformly oriented microtubules. Anterograde axonal transport is performed by kinesins and its function is to supply nerve terminals with proteins (enzymes, signaling molecules, filaments, motors), lipid vesicles and organelles like mitochondria for local energy requirements. Retrograde transport carried out by dyneins clears recycled or misfolded proteins but also it transmits trophic signals to the cell body. Here, we describe various components and mechanisms of axonal transport and we outline the factors that have been proposed to contribute to the cargo movement such as the use of adaptor proteins, the effect of MAPs (microtubule associated proteins) and the role of posttranslational modifications of tubulin.

Journal

Year

Volume

67

Issue

1

Pages

109-119

Physical description

Dates

published
2018

Contributors

  • Pracownia Białek Motorycznych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Motor Proteins, Department of Biochemustry, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland

References

  • Adio S., Reth J., Bathe F., Woehlke G., 2006. Review: regulation mechanisms of kinesin-1. J. Muscle Res. Cell Motil. 27, 153-160.
  • Barisic M., Silva e Sousa R., Tripathy S. K., Magiera M. M., Zaytsev A. V., Pereira A. L., Janke C., Grishchuk E. L., Maiato H., 2015. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348, 799-803.
  • Braun M., Drummond D. R., Cross R. A., McAinsh A. D., 2009. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat. Cell Biol. 11, 724-730.
  • Brown A., Li Y., Slaughter T., Black M. M., 1993. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 104, 339-352.
  • Brown A., Wang L., Jung P., 2005. Stochastic simulation of neurofilament transport in axons: the 'stop-and-go' hypothesis. Mol. Biol. Cell 16, 4243-4255.
  • Cianfrocco M. A., DeSantis M. E., Leschziner A. E., Reck-Peterson S. L., 2015. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 31, 83-108.
  • De Vos K. J., Hafezparast M., 2017. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis. 105, 283-299.
  • De Vos K. J., Grierson A. J., Ackerley S., Miller C. C., 2008. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151-173.
  • del Castillo U., Winding M., Lu W., Gelfand V. I., 2015. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. Elife 4, e10140.
  • Dixit R., Ross J. L., Goldman Y. E., Holzbaur E. L., 2008. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086-1089.
  • Drechsler H., McAinsh A. D., 2016. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Proc. Natl. Acad. Sci. USA 113, E1635-E1644.
  • Encalada S. E., Goldstein L. S., 2014. Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu. Rev. Biophys. 43, 141-169.
  • Fink G., Hajdo L., Skowronek K. J., Reuther C., Kasprzak A. A., Diez S., 2009. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 11, 717-723.
  • Franker M. A., Esteves da Silva M., Tas R. P., Tortosa E., Cao Y., Frias C. P., Janssen A. F., Wulf P. S., Kapitein L. C., Hoogenraad C. C., 2016. Three-step model for polarized sorting of KIF17 into dendrites. Curr. Biol. 26, 1705-1712.
  • Fu M. M., Holzbaur E. L., 2013. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495-508.
  • Ganguly A., Han X., Das U., Wang L., Loi J., Sun J., Gitler D., Caillol G., Leterrier C., Yates J. R. 3rd., Roy S., 2017. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J. Cell Biol. 216, 2059-2074.
  • Guo T., Noble W., Hanger D. P., 2017. Roles of tau protein in health and disease. Acta Neuropathol. 133, 665-704.
  • Hammond J. W., Huang C. F., Kaech S., Jacobson C., Banker G., Verhey K. J., 2010. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21, 572-583.
  • Han B., Zhou R., Xia C., Zhuang X., 2017. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc. Natl. Acad. Sci. USA 114, E6678-E6685.
  • Hancock W. O., Howard J., 1999. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. USA 96, 13147-13152.
  • Harterink M., Hoogenraad C. C., 2013. Slide to the left and slide to the right: motor coordination in neurons. Dev. Cell 26, 326-328.
  • He Y., Francis F., Myers K. A., Yu W., Black M. M., Baas P. W., 2005. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J. Cell Biol. 168, 697-703.
  • Higuchi H., Endow S. A., 2002. Directionality and processivity of molecular motors. Curr. Opin. Cell Biol. 14, 50-57.
  • Hirokawa N., Niwa S., Tanaka Y., 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.
  • Howes S. C., Alushin G. M., Shida T., Nachury M. V., Nogales E., 2014 Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 25, 257-266.
  • Ikegami K., Heier R. L., Taruishi M., Takagi H., Mukai M., Shimma S., Taira S., Hatanaka K., Morone N., Yao I., Campbell P. K., Yuasa S., Janke C., Macgregor G. R., Setou M., 2007. Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. USA 104, 3213-3218.
  • Jha R., Surrey T., 2015. Regulation of processive motion and microtubule localization of cytoplasmic dynein. Biochem. Soc. Trans. 43, 48-57.
  • Jolly A. L., Kim H., Srinivasan D., Lakonishok M., Larson A. G., Gelfand V. I., 2010. Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc. Natl. Acad. Sci. USA 107, 12151-12156.
  • Kaul N., Soppina V., Verhey K. J., 2014. Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys. J. 106, 2636-2643.
  • Konishi Y., Setou M., 2009. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559-567.
  • Liem R. K., 2016. Cytoskeletal integrators: The spectrin superfamily. Cold Spring Harb Perspect Biol., doi: 10.1101/cshperspect.a018259.
  • Lin S., Liu M., Mozgova O. I., Yu W., Baas P. W., 2012. Mitotic motors coregulate microtubule patterns in axons and dendrites. J. Neurosci. 32, 14033-14049.
  • Lipka J., Kapitein L. C., Jaworski J., Hoogenraad C. C., 2016. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J. 35, 302-318.
  • Lu W., Gelfand V. I., 2017. Moonlighting motors: kinesin, dynein, and cell polarity. Trends Cell Biol. 27, 505-514.
  • Maas C., Belgardt D., Lee H. K., Heisler F. F., Lappe-Siefke C., Magiera M. M., van Dijk J., Hausrat T. J., Janke C., Kneussel M., 2009. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc. Natl. Acad. Sci. USA 106, 8731-8736.
  • MacAskill A. F., Rinholm J. E., Twelvetrees A. E., Arancibia-Carcamo I. L., Muir J., Fransson A., Aspenstrom P., Attwell D., Kittler J. T., 2009. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541-555.
  • McKenney R. J., Huynh W., Vale R. D., Sirajuddin M., 2016. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J. 35, 1175-1185.
  • Nirschl J. J., Magiera M. M., Lazarus J. E., Janke C., Holzbaur E. L., 2016. α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637-2652.
  • Noble W., Hanger D. P., Miller C. C., Lovestone S., 2013. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4, 83.
  • Peris L., Wagenbach M., Lafanechère L., Brocard J., Moore A. T., Kozielski F., Job D., Wordeman L., Andrieux A., 2009. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185, 1159-1166.
  • Portran D., Schaedel L., Xu Z., Théry M., Nachury M. V., 2017. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19, 391-398.
  • Prior R., Van Helleputte L., Benoy V., Van Den Bosch L., 2017. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol. Dis. 105, 300-320.
  • Qiu W., Derr N. D., Goodman B. S., Villa E., Wu D., Shih W., Reck-Peterson S. L., 2012. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19, 193-200.
  • Rao A. N., Patil A., Black M. M., Craig E. M., Myers K. A., Yeung H. T., Baas P. W., 2017. Cytoplasmic dynein transports axonal microtubules in a polarity-sorting manner. Cell Rep. 19, 2210-2219.
  • Reed N. A., Cai D., Blasius T. L., Jih G. T., Meyerhofer E., Gaertig J., Verhey K. J., 2006. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166-2172.
  • Roy S., 2014 Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist 20, 71-81.
  • Scholey J. M., 2013. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443-469.
  • Scholz T., Mandelkow E., 2014. Transport and diffusion of Tau protein in neurons. Cell. Mol. Life Sci. 71, 3139-3150.
  • Sheng Z. H., Cai Q., 2012. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13, 77-93.
  • Sirajuddin M., Rice L. M., Vale R. D., 2014. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 16, 335-344.
  • Soppina V., Verhey K. J., 2014. The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors. Mol. Biol. Cell 25, 2161-2170.
  • Soppina V., Herbstman J. F., Skiniotis G., Verhey K. J., 2012. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 7, e48204.
  • Sudo H., Baas P. W., 2010. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J. Neurosci. 30, 7215-7226.
  • Vale R. D., Milligan R. A., 2000. The way things move: looking under the hood of molecular motor proteins. Science 288, 88-95.
  • van Spronsen M., Mikhaylova M., Lipka J., Schlager M. A., van den Heuvel D. J., Kuijpers M., Wulf P. S., Keijzer N., Demmers J., Kapitein L. C., Jaarsma D., Gerritsen H. C., Akhmanova A., Hoogenraad C. C., 2013. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485-502.
  • Walter W. J., Beránek V., Fischermeier E., Diez S., 2012. Tubulin acetylation alone does not affect kinesin1 velocity and run length in vitro. PLoS One 7, e42218.
  • Wang X., Schwarz T. L., 2009. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163-174.
  • Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y. L., Selkoe D., Rice S., Steen J., LaVoie M. J., Schwarz T. L., 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893-906.
  • Witte H., Neukirchen D., Bradke F., 2008. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619-632.
  • Xia C. H., Roberts E. A., Her L. S., Liu X., Williams D. S., Cleveland D. W., Goldstein L. S., 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55-66.
  • Xu K., Zhong G., Zhuang X., 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452-456.
  • Xu Z., Schaedel L., Portran D., Aguilar A., Gaillard J., Marinkovich M. P., Théry M., Nachury M. V., 2017. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328-332.
  • Yau K. W., Schätzle P., Tortosa E., Pagès S., Holtmaat A., Kapitein L. C., Hoogenraad C. C., 2016. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci 36, 1071-1085.
  • Yogev S., Cooper R., Fetter R., Horowitz M., Shen K., 2016. Microtubule organization determines axonal transport dynamics. Neuron 92, 449-460.
  • Zeytuni N., Zarivach R., 2012. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397-405.
  • Zhang K., Foster H. E., Rondelet A., Lacey S. E., Bahi-Buisson N., Bird A. W., Carter A. P., 2017. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303-1314.
  • Zheng Y., Wildonger J., Ye B., Zhang Y., Kita A., Younger S. H., Zimmerman S., Jan L. Y., Jan Y. N., 2008. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172-1180.
  • Zhu H., Lee H. Y., Tong Y., Hong B. S., Kim K. P., Shen Y., Lim K. J., Mackenzie F., Tempel W., Park H. W., 2012. Crystal structures of the tetratricopeptide repeat domains of kinesin light chains: insight into cargo recognition mechanisms. PLoS One 7, e33943.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv67p109kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.