PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 1 | 81-91
Article title

Antybiotykooporność w środowisku naturalnym - przyczyny i konsekwencje.

Content
Title variants
EN
Antibiotic resistance in the environment - causes and consequences.
Languages of publication
PL EN
Abstracts
PL
Oporność bakterii na antybiotyki to narastający problem ostatnich lat. W literaturze pojawiają się liczne doniesienia o szczepach wielolekoopornych izolowanych od pacjentów. Światowa organizacja zdrowia jak i Europejskie Centrum ds. Zapobiegania i Kontroli Chorób szacują, że oporność na środki przeciwdrobnoustrojowe powoduje co roku 25 tys. zgonów, a związane z tym koszty - z tytułu opieki zdrowotnej i strat wynikających ze spadku wydajności - wynoszą ponad 1,5 mld euro. Antybiotykooporność dotyczy nie tylko medycyny, ale również weterynarii, rolnictwa, żywności i szeroko rozumianego środowiska. Bardzo często te same gatunki bakterii, a co ważniejsze, te same geny warunkujące oporność na antybiotyki występują w wymienionych środowiskach. Liczne badania wskazują, że miejscem ,zapalnym' dla rozprzestrzeniania się antybiotykooporności poza środowiskiem klinicznym są oczyszczalnie ścieków. To tam mieszają się ścieki komunalne, szpitalne, przemysłowe, pochodzące z zakładów farmaceutycznych czy z rzeźni. Razem ze ściekami do oczyszczalni ścieków dostają się bakterie oporne na antybiotyki, w tym patogeny, jak również antybiotyki, które stanową presję selekcyjną.
EN
Bacterial resistance to antibiotics is a growing problem in recent years. In the literature, there are numerous reports of multi-drug resistant strains isolated from patients. The World Health Organization and the European Centre for Disease Prevention and Control estimates that antibiotic resistance causes 25 thousand deaths every year; this generates costs of more than 1.5 billion euros – due to healthcare and the losses resulting from a decline in productivity. Antibiotic resistance concerns not only clinical medicine but also veterinary, agriculture, food industry and broadly understood environment. Very often the same species of bacteria and, more importantly, the same antibiotic resistance genes are carried by bacteria present in the mentioned environments. Numerous studies indicate that the “hot spots” for the spread of antibiotic resistance outside the clinical environment are wastewater treatment plants, where there are mixed municipal, hospital and industrial sewages and wastewaters derived from pharmaceutical companies or the slaughterhouses. Therefore, the antibiotic resistant bacteria, including pathogens, as well as antibiotics that determine selective pressure thus enter sewage treatment plants with wastewaters.
Journal
Year
Volume
66
Issue
1
Pages
81-91
Physical description
Dates
published
2017
Contributors
  • Uniwersytet Warszawski, Wydział Biologii, Instytut Mikrobiologii, Zakład Mikrobiologii Stosowanej, Miecznikowa 1, 02-096 Warszawa, Polska
  • University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Applied Microbiology, Miecznikowa 1, 02-096 Warszawa, Poland
References
  • Alekshun M. N., Levy S. B., 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128, 1037-1050.
  • Allen H. K., Donato J., Wang H. H., Cloud-Hansen K. A., Davies J., Handelsman J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251-259.
  • Aminov R. I., 2009. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11, 2970-2988.
  • Andersson D. I., Hughe D., 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 2319, 260-271.
  • Benveniste R., Davies J., 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA 70, 2276-2280.
  • Berger C. N., Sodha S. V., Shaw R. K., Griffin P. M., Pink D., Hand P., Frankel G., 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12, 2385-2397.
  • Błaszczyk M. K., 2007. Mikroorganizmy w ochronie środowiska. Wydawnictwo Naukowe PWN. Warszawa.
  • Brötz-Oesterhelt H., Brunner N. A., 2008. How many modes of action should an antibiotic have? Curr. Opin. Pharmacol. 8, 564-573.
  • Canton R., 2009. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 15, 20-25.
  • Chopra I., Brennan P., 1998. Molecular action of antimycobacterial agents. Tuber. Lung Dis. 78, 89-98.
  • D'Costa V. M., McGrann K. M.,. Hughes D. W, Wright G. D., 2006. Sampling the antibiotic resistome. Science 311, 374-377.
  • Dantas G., Sommer M. O. A., Oluwasegun R. D., Church G. M., 2008. Bacteria subsisting on antibiotics. Science 320, 100-103.
  • De La Torre A., Iglesias I., Carballo M., Ramírez P., Muñoz M. J., 2012. An approach for mapping the vulnerability of European Union Soils to Antibiotic Contamination. Sci. Total Environt. 414, 672-679.
  • Ding CH., He J., 2010. Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 87, 925-941.
  • Frost L. S., Leplae R., Summers A. O., Toussaint A., 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722-32.
  • Gootz T. D., 2010. The global problem of antibiotic resistance. Crit. Rev. Immunol. 30, 79-93.
  • Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O., 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 35, 322-332.
  • Kim S., Aga D. S., 2007. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health B Crit. Rev. 10, 559-73.
  • Knapp C. W, Dolfing J., Ehlert P. A., Graham D. W., 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580-587.
  • Kümmerer K., 2004. Resistance in the environment. J. Antimicrob. Chemother. 54, 311-320.
  • Kümmerer K., 2009. Antibiotics in the aquatic environment. A review. Part I. Chemosphere 75, 417-434.
  • Lathers C. M., 2001. Role of veterinary medicine in public health: antibiotic use in food animals and humans and the effect on evolution of antibacterial resistance. J. Clin. Pharmacol. 41, 595-599.
  • Levy S. B., Marshall B., 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 12, S122-S129.
  • Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., Mueller A., Schäberle T. F., Hughes D. E., Epstein S., Jones M., Lazarides L., Steadman V. A., Cohen D. R., Felix C. R., Fetterman K. A., Millett W. P., Nitti A. G., Zullo A. M., Chen C., Lewis K., 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455-459.
  • Liu B., Pop M. 2009. ARDB- Antibiotic Resistance Genes Database. Nucleic Acids Res. 37, D443-D447.
  • Manaia C. M., Novo A., Coelho B., Nunes O. C., 2010. Ciprofloxacin resistance in domestic wastewater treatment plants. Water Air Soil Poll. 208, 335-343.
  • Mannanov R. N., Sattarova R. K., 2001. Antibiotics produced by Bacillus bacteria. Chem. Nat. Compd. 37, 117.
  • Markiewicz Z., Kwiatkowski Z. A., 2001. Bakterie antybiotyki lekooporność. Wydawnictwo Naukowe PWN, Warszawa.
  • Martínez J. L., 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365-367.
  • Martínez J. L., 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893-2902.
  • Martínez J. L., Baquero F., 2014. Emergence and spread of antibiotic resistance: setting a parameter space. Ups. J. Med. Sci. 119, 68-77.
  • Martínez J. L., Fajardo A., Garmendia L., Hernandez A., Linares J. F., Martinez-Solano L., Sanchez M. B., 2009. A global view of antibiotic resistance. FEMS 33, 44-65.
  • Martínez J. L., Coque T. M., Baquero F., 2015. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116-123.
  • McManus P. S., Stockwell V. O., Sundin G. W., Jones A. L., 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40, 443-465.
  • Miller J. H., Novak J. T., Knocke W. R., Pruden A., 2016. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters. Front. Microbiol. 7, doi: 10.3389/fmicb.2016.00263.
  • Piotrowska M., Popowska M., 2014. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann. Microbiol. 64, 921-934.
  • Piotrowska M., Popowska M., 2015. Insight into the mobilome of Aeromonas strains. Front. Microbiol. 6, 494.
  • Popowska M., Miernik A., Rzeczycka M., Łopaciuk A., 2010. The impact of environmental contamination with antibiotics on levels of resistance in soil bacteria. J. Environ. Qual. 39, 1679-1687.
  • Procópio R. E., Silva I. R., Martins M. K., Azevedo J. L., Araújo J. M., 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16, 466-471.
  • Riesenfeld C. S., Goodman R. M., Handelsman J., 2004. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981-989.
  • Sarmah A. K., Meyer M.T., Boxall A. B., 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725-759.
  • Świderska-Bróż M., Kowal A. L., 2007. Wydawnictwo Naukowe PWN. Warszawa.
  • Thanner S., Drissner D., Walsh F., 2016. Antimicrobial resistance in agriculture. mBio 7, doi:10.1128/mBio.02227-15.
  • Thiele-Bruhn S., 2003. Pharamceutical antibiotic compounds in soils - a review. J. Plant Nutr. Soil Sci. 166, 145-167.
  • Wagner M., Loy A., 2002. Bacterial community composition and function in sewage treatment systems. Current Opinion in Biotechnology 13, 218-227.
  • Weber T., Charusanti P., Musiol-Kroll E. M., Jiang X., Tong Y., Kim H. U., Lee S. Y., 2015. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol. 33, 15-26.
  • Wright G. D., 2010. Antibiotic resistance in environment: a link to the clinic? Curr. Opin. Microbiol. 13, 589-594.
  • Zhang T., Zhang X. X., Ye L., 2011. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6, e26041.
  • Zhang X. X., Zhang T., Fang H. H. P., 2009. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 82, 397-414.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p81kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.