PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 4 | 721-732
Article title

Różne strategie osiągania pamięci immunologicznej

Authors
Content
Title variants
EN
Different strategies for attaining immune memory
Languages of publication
PL EN
Abstracts
PL
Odporność nabyta inaczej adaptacyjna (swoista) rozwinęła się w ewolucji bardzo późno, bo dopiero u kręgowców żuchwowych. Oparta jest ona na limfocytach T i B oraz syntezie różnorodnych receptorów i przeciwciał. Okazuje się jednak, że u bezkręgowców, których odporność oparta jest jedynie na mechanizmach wrodzonych, obserwuje się swego rodzaju pamięć immunologiczną. Co więcej, nawet organizmy jednokomórkowe jak bakterie czy archeony wykazują cechy "pamięci immunologicznej". W artykule opisano różne strategie "zapamiętywania" infekcji: mechanizm CRISPR/Cas u bakterii, receptory DSCAM i inne formy piętnowania układu immunologicznego owadów oraz zmienność receptorów bogatych w leucynę (LRR) u bezżuchwowców. Przedstawiono także jak doszło do nabycia możliwości syntezy różnorodnych przeciwciał oraz receptorów limfocytów. Opisane mechanizmy opierają się na włączaniu obcego materiału genetycznego do genomu gospodarza, mechanizmie konwersji genów, alternatywnego składania transkryptów oraz somatycznej rearanżacji DNA.
EN
Acquired immunity (adaptive, specific) developed late in evolution - in jawed vertebrates. It is based on T and B lymphocytes and a diversity of antibodies. It turns out, however, that in invertebrates, which posses only innate mechanisms there is a kind of immune memory. Moreover, even single-cell organisms such as bacteria or archaea exhibit features of immunological memory. This article describes the various strategies used to achieve a kind of rememmbrnace of infection: a CRISPR/Cas system in bacteria, diveristy of DSCAM receptors and other forms of immune priming in insects, leucine-rich receptors in jawless vertebrates. It also describes how it came to acquire the possibility of synthesis of various forms of antibodies and lymphocyte receptors by jawed vertebrates. The described mechanisms are based on the incorporation of foreign genetic material into host genome, the gene conversion mechanisms, alternative splicing and finally, somatic rearrangements of DNA.
Journal
Year
Volume
66
Issue
4
Pages
721-732
Physical description
Dates
published
2017
Contributors
author
  • Zakład Immunobiologii, Instytut Biologii i Biochemii, Wydział Biologii i Biotechnologii, Uniwersytet Marii Curie Skłodowskiej, Akademicka 19, 20-033 Lublin, Polska
  • Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
References
  • Armitage S. A., Sun W., You X., Kurtz J., Schmucker D., Chen W., 2014. Quantitative profiling of Drosophila melanogaster DSCAM1 isoforms reveals no changes in splicing after bacterial exposure. PLoS One. 9, e108660.
  • Asgari S., 2013. MicroRNA functions in insects. Ins. Bioch. Mol. Biol. 43, 388-397.
  • Barrangou R., 2015. Diversity of CRISP-Cas immune systems and molecular machines. Gen. Biol. 16, e247.
  • Bassing C.H., Swar W., Alt F.W., 2002. The mechanism of chromosomal V(D)J recombination. Cell 109, S45-S55.
  • Bergin D., Murphy L., Keenan J., Clynes M., Kavanagh K., 2006. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microb. Infect. 8, 2105-2112.
  • Boehm T., McCurley N., Sutoh Y., SchorppM., Kasahara M., Cooper M. D., 2012. VLR-based adaptive immunity. Ann. Rev. Immunol. 30, 203-220.
  • Brockhurst M. A., Koskella B., 2013. Experimental coevolution of species interactions. Trends Ecol. Evol. 28, 367-375.
  • Brown T. A., 2009. Rearanżacje genomu. [W:] Genomy. Brown T. A. (red.). Wydawnictwo Naukowe PWN, Warszawa.
  • Buchmann K., 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, e459.
  • Bushati N., Cohen SM., 2007. Micro RNA functions. Annu. Rev. Cell Dev. Biol. 23, 175-205.
  • Cytryńska M., Wojda I., Jakubowicz T., 2016. How insect combat infection [W:] Lessons in immunity. From single cells organisms to mammals. Ballarin L., Cammarata M. (red.). Academic Press. Elsevier.
  • Chambers M. C., Schneider D. S., 2012. Pioneering immunology. Insect style. Curr. Opin. Immunol. 24, 10-14.
  • Cherry S., Silverman N., 2006. Host-pathogen interaction in Drosophila: new tricks from an old friend. Nat. Immunol. 7, 911-917.
  • Dong Y., Taylor H.E., Dimopoulos G., 2006. AgDSCAM, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 4, e229.
  • Dubovskiy I. M., Whitten M. M., Yaroslavtseva O. N., Greig C., Kryukov V. Y., Grizanova E. V., Mukherjee K., Vilcinskas A., Glupov V. V., Butt T. M., 2013. Can insects develop resistance to insect pathogenic fungi? PLoS One 8, e60248.
  • Fineran P. C., Charpentier E., 2012. Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of a new information. Virology 434, 202-209.
  • Fugmann S. D., Messier C., Novack L., Cameron A., Rast J. P., 2006. An ancient evolutionary origin of the Rag1/2 gene locus. Proc. Natl. Acad. Sci. USA 103, 3728-3733.
  • Ghosh J., Man Lun C., Majeske A. J., Sacchi S., Schrankel C. S., Courtney Smith L., 2011. Invertebrate immune diversity. Dev. Comp. Immunol. 35, 959-974.
  • Graveley B. R., 2005. Mutually exclusive splicing of the insect DSCAM pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65-73.
  • Heler R., Marraffini L.A., Bikard D., 2014. Adapting to new threats: the generation of memory by CRISPR- Cas immune systems. Mol. Microbiol. 93, 109.
  • Horvath P., Barrangou R., 2010. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327, 167-170.
  • Ishino Y., Shiganawa H., Makino K., Amemura M., Nakata A., 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-33.
  • Jones J. J., Gellert M., 2004. The taming of a transposon: V(D)J recombination and the immune system. Immunol. Rev. 200, 233-248.
  • Kasahara M., Sutoh Y., 2014. Two forms of adaptive immunity in vertebrates: similarities and differences. Adv. Immunol. 122, 50-89.
  • Kapitonov V. V., Jurka J., 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e 181.
  • Kapitonov V. V., Koonin E. V., 2015. Evolution of RAG-1-RAG-2 locus: both proteins came from the same transposon. Biol. Direct 10, e20.
  • Kishishita N., Nagawa F., 2013. Evolution of adaptive immunity: implications of a third lymphocyte lineage in lampreys. Bioessays 36, 244-250.
  • Kurata S., 2006. Recognition and elimination of diversified pathogens in insect defense systems. Mol. Div. 10, 599-605.
  • Lydyard P. M., Whelan A., Fanger M. W., 2017. Źródła różnorodności przeciwciał - rozdział D3. [W:] Krótkie wykłady. Immunologia. Lydyard P. M., Whelan A., Fanger M.W. (red.). Wydawnictwo Naukowe PWN, Warszawa.
  • Market E., Papavasiliou F. N., 2003. V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol. 1, 024-027.
  • Makarova K. S., Grishin N. V., Shabalina S. A., Wolf Y. I., Koonin E. V., 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eucaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1, 7.
  • Mukherjee K., Vilcinskas A., 2014. Development and immunity-related microRNAs of the lepidopteran model host Galleria mellonella. BMC Genom. 15, 705.
  • Mukherjee K., Twyman R. M., Vilcinskas A., 2015. Instects as models to study the epigenetic basis of disease. Prog. Biophys. Mol. Biol. 118, 69-78.
  • Nagava F., Kishishita N., Shimizu K., Hirose S., Miyoshi M., Nezu J., Nishimura T., Nishizumi H., Takahashi Y., Hashimoto S., Takeuchi M., Miyajima A., Takemori T., Otsuka A. J., Sakano H., 2007. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat. Immunol. 8, 206-213.
  • Pancer Z., Amemiya C. T., Ehrhardt G. R., Ceitlin J., Gartland G. L., Cooper M. D., 2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174-80.
  • Pancer Z., Saha N.R., Kasamatsu J., Suzuki T., Amemiya C. T., Kasahara M., Cooper M. D., 2005. Variable lymphocyte receptors in hagfish. Proc. Natl. Acad. Sci. USA 102, 9224-9229.
  • Pham L. N., Dionne M. S., Shirasu-Hiza M., Schneider D. S., 2007. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Path. 3, e26.
  • Rath D., Amlinger L., Rath A., Lungren M., 2015. The CRISPR-Cas immune system: Biology, mechanism and applications. Biochimie 117, 119-128.
  • Rogalska S. M., Kalinka A., Achrem M., Słomińska-Walkowiak., Skuza L., Filip E., 2004. Genetyczne elementy ruchome u roślin i innych organizmów. Kosmos 53, 325-342.
  • Sato F., Tsuchiya S., Meltzer S., Shimizu K., 2011. MicroRNAs in epigenetics. FEBS J. 278, 1598-1609.
  • Schluter S. F., Berstein R. M., Bernstein H., Marchalonis J. J., 1999. 'Big Bang' emergence of the combinatorial immune system. Dev. Comp. Immun. 23, 107-111.
  • Sotero-Caio C. G., Platt R. N., Suh A., Ray D. A., 2017. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161-177.
  • Suttle C., 2005. Viruses in the sea. Nature 437, 356-361.
  • Tonegawa S., 1983. Somatic generation of antibody diversity. Nature 302, 575-581.
  • Vilcinskas A., 2016. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. Zoology 119, 273-280.
  • Watson F. L., Puttmann-Holgado R., Thomas F., Lamar D. L., Hoghes M., Kondo M., Rebel V. I., Schmucker D., 2005. Extensive diversity of Ig - sumerfamily proteins in the immune system of insects. Science 309, 1874-1878.
  • Yamakawa K., Huot Y. K., Haendelt M. A., Hubert R., Chen X. N., Lyons G. E., Korenberg J. R., 1998. DCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrom region and is involved in the development of the nervous system. Human Mol. Gen. 7, 227-237.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p721kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.