Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 691-702

Article title

Domeny błonowe komórek eukariotycznych i prokariotycznych i ich udział w przekazywaniu sygnału

Content

Title variants

EN
Membrane domains of eukaryotic and prokaryotic cells: their role in signal transduction

Languages of publication

PL EN

Abstracts

PL
Błona komórkowa komórek eukariotycznych jest niejednorodna i charakteryzuje się obecnością domen nazywanych tratwami błonowymi. Są to liczące kilka nanometrów dynamiczne skupiska sfingolipidów, cholesterolu i wybranych białek, zwłaszcza palmitoilowanych, które wyodrębniają się z otaczającego je środowiska glicerofosfolipidów. Labilne nanodomeny zlewają się w większe struktury, platformy sygnałowe, stabilizowane przez interakcję z cytoszkieletem podbłonowym w czasie aktywacji szeregu receptorów zaangażowanych w reakcje wrodzonej i nabytej odporności. Paradoksalnie, niektóre wirusy i bakterie wykorzystują tratwy błonowe jako miejsca inwazji/opuszczania komórek gospodarza. Z drugiej strony, w błonie bakterii wykryto rejony, w których także skupiają się wybrane białka sensorowe i enzymy, co sugeruje udział domen błony bakteryjnej w procesach przekazywania sygnału. Skład lipidowy bakteryjnych domen błonowych jest słabo poznany, a rolę w ich formowaniu przypisuje się białku flotylinie. Heterogenna organizacja błony komórkowej jest zatem zachowanym ewolucyjnie sposobem zapewnienia właściwej przestrzennej organizacji receptorów oraz białek i lipidów biorących udział w ich kaskadach sygnałowych, która stała się szczególnie istotna dla funkcjonowania komórek układu odpornościowego człowieka i zwierząt.
EN
The plasma membrane of eukaryotic cells contains domains named rafts which are nonscale dynamic assemblies of sphingolipids, cholesterol and selected proteins, mainly palmitoylated ones. During stimulation of distinct immune receptors labile rafts merge into larger structures which are stabilized by submembraneous cytoskeleton and serve as signaling platforms of those receptors. Paradoxically, rafts are also utilized by some viruses and bacteria to invade/escape host cells. On the other hand, bacterial plasma membrane contains domains accommodating sensory proteins and several other enzymes which suggests that those domains are sites of signal transduction. Lipid composition of bacterial membrane domains is poorly characterized and a role in their formation is ascribed to proteins named flotillins. Thus, domain organization of the plasma membrane seems to be common to eukaryotic and prokaryotic cells. It facilitates spatial organization of plasma membrane receptors as well as lipids and proteins involved in their signaling pathways. During evolution rafts of the plasma membrane have become important especially for functioning of human and animal immune cells.

Journal

Year

Volume

66

Issue

4

Pages

691-702

Physical description

Dates

published
2017

Contributors

author
  • Pracownia Biologii Molekularnej Błony Komórkowej, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Labolatory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warszawa, Poland
  • Pracownia Biologii Molekularnej Błony Komórkowej, Zakład Biologii Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Labolatory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warszawa, Poland

References

  • Abdel-Shakor A. B., Kwiatkowska K., Sobota A., 2004. Cell surface ceramide generation precedes and controls FcγRII clustering and phosphorylation in rafts. J. Biol. Chem. 279, 36778-36787.
  • Ahmed S. N., Brown D. A., London D. A., 1997. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944-10953.
  • Ariotti N., Parton R. G., 2013. SnapShot: caveolae, caveolins, and cavins. Cell 154, 704.
  • Bach J. N., Bramkamp M., 2013. Flotillins functionally organize the bacterial membrane. Mol. Microbiol. 88, 1205-1217.
  • Bramkamp M., López D., 2015. Exploring the existence of lipid rafts in bacteria. Microbiol. Mol. Biol. Rev. 79, 81-100.
  • Brdicka T., Imrich M., Angelisová P., Brdicková N., Horváth O., Spicka J., Hilgert I., Lusková P., Dráber P., Novák P., Engels N., Wienands J., Simeoni L., Osterreicher J., Aguado E., Malissen M., Schraven B., Horejsí V., 2002. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617-1626.
  • Chamberlain L. H., Shipston M. J., 2015. The physiology of protein S-acylation. Physiol. Rev. 95, 341-376.
  • Dempwolff F., Schmidt F. K., Hervás A. B., Stroh A., Rösch T. C., Riese C. N., Dersch S., Heimerl T., Lucena D., Hülsbusch N., Stuermer C. A., Takeshita N., Fischer R., Eckhardt B., Graumann P. L., 2016. Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet. 12, e1006116.
  • Dhungana S., Merrick B. A., Tomer K. B., Fessler M. B., 2009. Quantitative proteomics analysis of macrophage rafts reveals compartmentalized activation of the proteasome and of proteasome-mediated ERK activation in response to lipopolysaccharide. Mol. Cell. Proteom. 8, 201-213.
  • Diaz-Rohrer B. B., Levental K. R., Simons K., Levental I., 2014 Membrane raft association is a determinant of plasma membrane localization. Proc. Natl. Acad. Sci. USA 111, 8500-8505.
  • Donovan C., Bramkamp M., 2009. Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155, 1786-1799.
  • Drisdel R. C., Green W. N., 2004. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276-285.
  • Ewers H., Römer W., Smith A. E., Bacia K., Dmitrieff S., Chai W., Mancini R., Kartenbeck J., Chambon V., Berland L., Oppenheim A., Schwarzmann G., Feizi T., Schwille P., Sens P., Helenius A., Johannes L., 2010. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12, 11-18.
  • Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T., 2012. Immunologia. PWN.
  • Hannich J. T., Umebayashi K., Riezman H., 2011. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 3, a004762.
  • Horejsi V., Hrdinka M., 2014. Membrane microdomains in immunoreceptor signaling. FEBS Lett. 588, 2392-2397.
  • Józefowski S., Czerkies M., Łukasik A., Bielawska A., Bielawski J., Kwiatkowska K., Sobota A., 2010. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide. J. Immunol. 185, 6960-6973.
  • Kacprzyk-Stokowiec A., Kulma M., Traczyk G., Kwiatkowska K., Sobota A., Dadlez M., 2014. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study. J. Biol. Chem. 289, 28738-28752.
  • Kawai T., Akira S., 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650.
  • Kusumi A., Fujiwara T. K., Morone N., Yoshida K., J., Chadda R., Xie M., Kasai R. S., Suzuki K. G., 2012. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin. Cell Dev. Biol. 23, 126-144.
  • Kwiatkowska K., Frey J., Sobota A., 2003. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J. Cell Sci. 116, 537-550.
  • Larocca T. J., Pathak P., Chiantia S., Toledo A., Silvius J. R., Benach J. L., London E., 2013. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9, e1003353.
  • Levental I., Grzybek M., Simons K., 2011. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 108, 11411-11416.
  • Lingwood D., Simons K., 2010. Lipid rafts as a membrane-organizing principle. Science 327, 46-50.
  • London E., Brown D. A., 2000. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508, 182-195.
  • López D, Kolter R., 2010. Functional microdomains in bacterial membranes. Genes Dev. 24, 1893-1902.
  • Łach A., Grzybek M., Heger E., Korycka J., Wolny M., Kubiak J., Kolondra A., Bogusławska D. M., Augoff K., Majkowski M., Podkalicka J., Kaczor J., Stefanko A., Kuliczkowski K., Sikorski A. F., 2012. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J. Biol. Chem. 287, 18974-118984.
  • Martin B. R., Cravatt B. F., 2009. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods. 6, 135-138.
  • Merrick B. A., Dhungana S., Williams J. G., Aloor J. J., Peddada S., Tomer K. B., Fessler M. B., 2011. Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol. Cell. Proteomics 10, M110.006007.
  • Otto G. P., Nichols B. J., 2011. The roles of flotillin microdomains - endocytosis and beyond. J. Cell Sci. 124, 3933-3940.
  • Owen D. M., Gaus K., 2013. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. Front. Plant Sci. 4, 503.
  • Owen D. M., Williamson D. J., Magenau A., Gaus K. 2012. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3, 1256.
  • Pageon S. V., Tabarin T., Yamamoto Y., Ma Y., Nicovich P. R., Bridgeman J. S., Cohnen A., Benzing C., Gao Y., Crowther M. D., Tungatt K., Dolton G., Sewell A. K., Price D. A., Acuto O., Parton R. G., Gooding J. J., Rossy J., Rossjohn J., Gaus K., 2016. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA 113, E5454-E5463.
  • Park B. S., Song D. H., Kim H. M., Choi B. S., Lee H., Lee J. O., 2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195.
  • Płóciennikowska A., Hromada-Judycka A., Borzęcka K., Kwiatkowska K., 2015a. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 72, 557-581.
  • Płóciennikowska A., Zdioruk M. I., Traczyk G., Świątkowska A., Kwiatkowska K., 2015b. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. J. Cell Sci. 128, 4096-4111.
  • Raghupathy R., Anilkumar A. A., Polley A., Singh P. P., Yadav M., Johnson C., Suryawanshi S., Saikam V., Sawant S. D., Panda A., Guo Z., Vishwakarma R. A., Rao M., Mayor S., 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581-594.
  • Razzaq T. M., Ozegbe P., Jury E. C., Sembi P., Blackwell N. M., Kabouridis P. S., 2004. Regulation of T-cell receptor signalling by membrane microdomains. Immunology 113, 413-426.
  • Sáenz J. P., Grosser D., Bradley A. S., Lagny T. J., Lavrynenko O., Broda M., Simons K., 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc. Natl. Acad. Sci. USA 112, 11971-11976.
  • Schneider J., Klein T., Mielich-Suss B., Koch G., Franke C., Kuipers O. P., Kovacs A. T., Sauer M., López D., 2015. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet. 11, e1005140.
  • Sheets E. D., Holowka D., Baird B., 1999. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877-887.
  • Shogomori H., Brown D. A., 2003.Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384, 1259-1263.
  • Simons K., Ikonen E., 1997. Functional rafts in cell membranes Nature 387, 569-572.
  • Singer S. J., Nicolson G. L., 1972. The fluid mosaic model of the structure of cell membranes. Science 175,720-731.
  • Sobocińska J., Roszczenko-Jasińska P., Zaręba-Kozioł M., Hromada-Judycka A., Matveichuk O. V., Traczyk G., Kwiatkowska K. 2017. LPS upregulates palmitoylated enzymes of the phosphatidylinositol cycle. An insight from proteomic studies. Mol. Cel. Proteom., w druku.
  • Somani V. K., Aggarwal S., Singh D., Prasad T., Bhatnagar R., 2016. Identification of novel raft marker protein, FlotP in Bacillus anthracis. Front. Microbiol. 7, 169.
  • Stepanek O, Draber P, Horejsi V., 2014. Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cell. Signal. 26, 895-902.
  • Stuermer C. A., 2011. Reggie/flotillin and the targeted delivery of cargo. J. Neurochem. 116, 708-713.
  • Suzuki K. G., Kasai R. S., Hirosawa K. M., Nemoto Y. L., Ishibashi M., Miwa Y., Fujiwara T. K., Kusumi A., 2012. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol. 8, 774-783.
  • Tavano R., Contento R. L., Baranda S. J., Soligo M., Tuosto L., Manes S., Viola A., 2006. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat. Cell Biol. 8, 1270-1276.
  • Thinon E., Percher A., Hang H. C., 2016. Bioorthogonal chemical reporters for monitoring unsaturated fatty-acylated proteins. Chembiochem. 17, 1800-1803.
  • Triantafilou M., Miyake K., Golenbock D. T., Triantafilou K., 2002. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci. 115, 2603-2611.
  • Van Der Goot F. G., Tran Van Nhieu G., Allaoui A., Sansonetti P., Lafont F., 2004. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J. Biol. Chem. 279, 47792-47798.
  • Veit M., 2012. Palmitoylation of virus proteins. Biol. Cell 104, 493-515.
  • Wagner R. M., Kricks L., López D., 2016. Functional membrane microdomains organize signaling networks in bacteria. J. Membr. Biol., w druku.
  • Zanoni I., Ostuni R., Marek L. R., Barresi S., Barbalat R., Barton G. M., Granucci F., Kagan J. C. 2011. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880.
  • Zhang Y., Li X., Becker K. A., Gulbins E., 2009. Ceramide-enriched membrane domains - structure and function. Biochim. Biophys. Acta. 1788,178-183.
  • Zhang M. M., Tsou L. K., Charron G., Raghavan A. S., Hang H. C., 2010. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. USA 107, 8627-8632.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p691kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.