Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 1 | 67-79

Article title

Oporność na antybiotyki bakterii z rodzaju enterococcus występujących w żywności

Content

Title variants

EN
Antibiotic resistance of Enterococcus strains present in food.

Languages of publication

PL EN

Abstracts

PL
W ostatnich latach obserwowany jest w otoczeniu człowieka systematyczny wzrost liczby szczepów antybiotykoopornych. Przez długi czas zjawisko antybiotykooporności wiązano jedynie ze środowiskiem szpitalnym. Jednakże badania wykazały m.in., że także żywność może być jednym ze źródeł rozprzestrzeniania szczepów opornych na antybiotyki. Zdolność paciorkowców z rodzaju Enterococcus do przeżywania szeregu niekorzystnych warunków powoduje, że są one obecne w niemal każdym rodzaju żywności. Celem niniejszego przeglądu było opisanie mechanizmów oporności u enterokoków, roli mobilnych elementów genetycznych w jej rozprzestrzenianiu oraz scharakteryzowanie antybiotykooporności u enterokoków izolowanych z żywności w tym żywności gotowej do spożycia.

Journal

Year

Volume

66

Issue

1

Pages

67-79

Physical description

Dates

published
2017

Contributors

  • Katedra Mikrobiologii Przemysłowej i Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-719 Olsztyn, Polska
  • Chair of Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
  • Katedra Mikrobiologii Przemysłowej i Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-719 Olsztyn, Polska
  • Chair of Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
  • Katedra Mikrobiologii Przemysłowej i Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-719 Olsztyn, Polska
  • Chair of Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland

References

  • Barbosa J., Ferreira V., Teixeira P., 2009. Antibiotic susceptibility of enterococci isolated from traditional fermented meat products. Food Microbiol. 26, 527-532.
  • Bea-Ven Ch., Fu-Yin H., Hung-Yu L., 2014. Biodegradation of three tetracyclines in swine wastewater. J. Environ. Sci. Health B 49, 449-455.
  • Boyd D. A., Willey B. M., Fawcett D., Gillani N., Mulvey M. R., 2008. Molecular characterization of Enterococcus faecalis N06-0364 with low-level ancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob. Agents Chemother. 52, 2667-26672.
  • Cai Y., Kong F., and Gilbert G. L., 2007. Three new macrolide effux (mef) gene variants in Streptococcus agalactiae. J. Clin. Microbiol. 45, 2754-2755.
  • Camargo C. H., Bruder-Nascimento A., Lee S. H., Júnior A. F., Kaneno R., Mores Rall V., R., 2014. Prevalence and phenotypic characterization of Enterococcus spp. isolated from food in Brazil. Braz. J. Microbiol. 45, 111-115.
  • Chajęcka-Wierzchowska W., Zadernowska A., Łaniewska-Trokenheim Ł., 2016. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT Food Sci.Technol. 69, 117-122.
  • Choi J. M., Woo G. J., 2014. Transfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis. Cur. Microbiol. 70, 476-484.
  • Chow J. W., 2000. Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 31, 586-589.
  • Clewell D. B., Francia M. V., Flannagan S. E. An F. Y., 2002. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48, 193-201.
  • Collignon P., Powers J. H., Chiller T. M., Aidara-Kane A., Aarestrup F. M., 2009. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin. Infect. Dis. 49, 132-141.
  • Courvalin P., 2005. Genetics of glycopeptide resistance in Gram-positive pathogens. Int. J. Med. Microbiol. 294, 479-486.
  • Del Grosso M., Northwood J. G. E., Farrell D. J., Pantosti A., 2007. The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dualgene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrob. Agents Chemioth. 50, 4184-4186.
  • Delpech G., Pourcel G., Schell C., De Luca M., Basualdo J., Bernstein J., Grenovero S., Sparo M., 2012. Antimicrobial resistance profiles of Enterococcus faecalis and Enterococcus faecium isolated from artisanal food of animal origin in Argentina. Foodborne Pathog. Dis. 9, 939-944.
  • Depardieu F., Kolbert M., Pruul H., Bell J., Courvalin P., 2004. VanD-type vancomycin resistant Enterococcus faecium and Enterococcus faecium. Antimicrob. Agents Chemioth. 48, 3892-3904.
  • Ding C., He. J., 2010. Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biot. 87, 925-941.
  • Ding Z. F., Zhang H., Tang W., Tong C. Y., Li R.T., Chen L.X., Pu L. J., Zhu Z. B., Cui Y. D., 2012. Methylase genes-mediated erythromycin resistance in Staphylococcus aureus from bovine mastitis in China. Israel J. Vet. Med. 67, 170-179.
  • Duran N., Burcin O., Duran G. G., Onlen Y., Deir C., 2012. Antibiotic resistance genes and susceptibility patterns in staphylococci. Indian J. Med. Res. 135, 389-396.
  • Dutta I., Reynolds P. E., 2002. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob. Agents Chemioth. 46, 3125-3132.
  • Foulquié Moreno M. R., Sarantinopoulos P., Tsakalidou E., De Vuyst L., 2006. The role and application of enterococci in food and health. Int. J. Food Microbiol. 106, 1-24.
  • Fracalanzza S. S., Scheidegger E., Santos P., Leita P., Teizeira L., 2007. Antimicrobial resistance profiles of enterococci isolated from poultry meat and pasteurized milk in Reo de Janecro. Mem. I. Oswaldo Cruz. 102, 853-859.
  • Gazzola S., Fontana C., Bassi D., Cocconcelli P. S., 2012. Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. Food Microbiol. 30, 348-354.
  • Gelsomino R., Vancanneyt M., Cogan T. M., Swings J., 2003. Effect of raw-milk cheese consumption on the enterococcal flora of human feces. Appl. Environ. Microb. 69, 312-319.
  • Gholizadeh Y., Courvalin P.. 2000. Acquired and intrinsic glycopeptide resistance in enterococci. Int. J. Antimicrob. Agents 16 (Supl. 1), S11-S17.
  • Giraffa G., 2002. Enterococci from foods. FEMS Microbiol. Rev. 26, 163-171.
  • Gomes B. C., Esteves C. T., Palazzo I. C. V., Darini A. L. C., Felis G. E., Sechi L. A., Franco B. D. G. M., De Martinis E. C. P., 2008. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol. 25, 668-675.
  • Hammerum A. M., 2012. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 18, 619-625.
  • Haug M. C., Tanner S. A., Lacroix C., Stevens M. J. A., Meile L., 2011. Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. FEMS Microbiol. Ecol. 78, 210-219.
  • Henry X., Amoroso A., Coyette J., Joris B., 2010. Interaction of ceftobiprole with the low-affinity PBP 5 of Enterococcus faecium. Antimicrob. Agents Chemioth. 54, 953-955.
  • Hollenbeck B.L., Rice L.B., 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 3, 421-569.
  • Hummel A., Holzapfel W. H., Franz C. M. A. P., 2007. Characterization and transfer of antibiotic resistance genes from enterococci isolated from food. Sys. Appl. Microbiol. 30, 1-7.
  • Hwang I. Y., Ku H. O., Lim S. K., Lee K. J., Park C. K., Jung G. S., Jung S. C., Park Y. H., Nam H. M., 2010. Distribution of streptogramin resistance genes and genetic relatedness among quinupristin/dalfopristin-resistant Enterococcus faecium recovered from pigs and chickens in Korea. Res. Vet. Sci. 89, 1-4.
  • Jensen L. B., Garcia-Migura L., Valenzuela A. J. S., Løhr M., Hasman H., Aarestrup F. M., 2010. A classification system for plasmids from enterococci and other Gram-positive bacteria. J. Microbiol. Meth. 80, 25-43.
  • Johnston L., Jaykus L., 2004. Antimicrobial resistance of Enterococcus species isolated from produce. Appl. Environ. Microbiol.70, 3133-3137.
  • Koluman A., Akan L.S., Cakiroglu F. P., 2009. Occurrence and antimicrobial resistance of enterococci in retail foods. Food Control 20, 281-283.
  • Kümmerer K., 2009. Antibiotics in the aquatic environment. A review. Part II. Chemosphere. 75, 435-441.
  • Kwon J.W., 2011. Mobility of veterinary drugs in soil with application of manure compost. B. Environ. Contam. Tox. 87, 40-44.
  • Lascols C., Legrand P., Mérens A., Leclercq R., Muller-Serieys C., Drugeon H. B., Kitzis M. D., Reverdy M. E., Roussel-Delvallez M., Moubareck C., Brémont S., Miara A., Gjoklaj M., Soussy C. J., 2011. In vitro antibacterial activity of ceftobiprole against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints. Int. J. Antimicrob. Ag. 37, 235-239.
  • Leavis H. L., Willems R. J., van Wamel W. J., Schuren F. H., Caspers M. P., Bonten M. J., 2007. Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog. 3, e7.
  • Lebreton F., Depardieu F., Bourdon N., Fines-Guyon M., Berger P., Camiade S., Leclercq R., Courvalin P., Cattoir V., 2011. D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemioth. 55, 4606-4612.
  • Li X.-Z., Nikaido H., 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69, 1555-1623.
  • Mannu L., Paba A., Daga E., Comunian R., Zanetti S., Dupre I., Sechi L. A., 2003. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 88, 291-304.
  • Martinez J. L., 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893-2902.
  • McGowan L. L., Jackson C. R., Barrett J. B., Hiott L. M., Fedorka-Cray P. J., 2006. Prevalence and antimicrobial resistance of enterococci isolated from retail fruits, vegetables, and meats. J. Food Prot. 69, 2976-2982.
  • McKessar S. J., Berry A. M., Bell J. M., Turnidge J. D., Paton J. C., 2000. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob. Agents Chemioth. 44, 3224-3228.
  • Müller T., Ulrich A., Ott E. M., Müller M., 2001. Identification of plant-associated enterococci. J. Appl. Microbiol. 91, 268-278.
  • Norman A., Hansen L. H., Sorensen S. J., 2009. Conjugative plasmids: vessels of the communal gene pool. Philos. T. Roy. Soc. B. 364, 2275-2289.
  • Novais C., Coque T. M., Sousa J. C., Peixe L. V., 2006. Antimicrobial resistance among faecal enterococci from healthy individuals in Portugal. Clin. Microbiol. Inf.12, 1131-1134.
  • Palmieri C., Mingoia M., Massidda O., Giovanetti E., Varaldo P. E., 2012. Streptococcus pneumoniae transposon Tn1545/Tn6003 changes to Tn6002 due to spontaneous excision in circular form of the erm(B)- and aphA3-containing macrolide-aminoglycoside-streptothricin (MAS) element. Antimicrob. Agents Chemioth. 56, 5994-5997.
  • Pesavento G., Calonico C, Ducci B, Magnanini A., Lo Nostro A., 2014. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiol. 41, 1-7.
  • Portillo A., Ruiz-Larrea F., Zarazaga M., Alonso A., Martinez J. L. Torres C., 2000. Macrolide resistance genes in Enterococcus spp. Antimicrob. Agents Chemioth. 44, 967-971.
  • Reijtman V., Gagetti P., Faccone D., Fossati S., Sommerfleck P., Hernández C., Bernáldez P., Lopardo H., Corso A., 2013. Macrolide resistance in Streptococcus pneumoniae isolated from Argentinian pediatric patients suffering from acute otitis media. Rev. Argentina Microbiol. 45, 262-266.
  • Reinert R. R., 2009. The antimicrobial resistance profile of Streptococcus pneumoniae. Clin. Microbiol. Inf. 15 Suppl 3, 7-11.
  • Rice L. B., 1998. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemioth. 42, 1871-1877.
  • Rice L. B., Bellais S., Carias L. L., Hutton-Thomas R., Bonomo R. A, Caspers P., Page M. G. P., Gutmann L., 2004. Impact of Specific pbp5 Mutations on Expression of β-Lactam Resistance in Enterococcus faecium. Antimicrob. Agents Chemioth. 48, 3028-3032.
  • Roberts M. C., 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245, 195-203.
  • Roberts M. C., 2008. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 282, 147-159.
  • Roberts M. C., 2011. Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front. Microbiol. 2, 1-8.
  • Sergelidis D., Abrahim A., Papadopoulos T., Kirkoudis J., Anagnostou V., Papavergou A., Papa A., 2013. Antimicrobial susceptibility of Enterococcus spp. isolated from freshwater fish and personnel and equipment of fish markets in northern Greece. J. Hellenic Vet. Med. Soc. 64, 239-248.
  • Teuber M., Meile L., Schwarz F., 2009. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek. 76, 115-137.
  • Thumu S. C. R., Halami P. M., 2012. Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic acid bacteria of food origin. Indian J. Microbiol. 52, 530-537.
  • Tremblay C. L., Letellier A., Quessy S., Boulianne M., Daignault D., Archambault M., 2011. Multiple-antibiotic resistance of Enterococcus faecalis and Enterococcus faecium from cecal contents in broiler chicken and turkey flocks slaughtered in Canada and plasmid colocalization of tetO and ermB genes. J. Food Prot. 74, 1639-1648.
  • Tremblay C.L., Letellier A., Quessy S., Daignault D., Archambault M., 2012. Antibiotic-resistant Enterococcus faecalis in abattoir pigs and plasmid colocalization and cotransfer of tet(M) and erm(B) genes. J. Food Prot. 75, 1595-1602.
  • Van den Berghe E., De Winter T., De Vuyst L., 2006. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int. J. Food Microbiol. 107, 159-170.
  • Werner G., 2012. Surveillance of antimicrobial resistance among Enterococcus faecium and Enterococcus faecalis isolated from human (clinical/commensal), foodanimal, meat and environmental samples. [W:] Enterococcus and safety. Semedo-Lemsaddek T., Barreto-Crespo M.T., Tenreiro R. (red.). NovaScience Publishers Inc., Hauppage, New York, 155-198.
  • Woodford N., 2005. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin. Microbiol. Inf. 11 (Suppl. 3), 2-21.
  • Xu X., Lin D., Yan G., Ye X., Wu S., Guo Y., Zhu D., Hu F., Zhang Y., Wang F., Jacoby G. A., Wang M., 2010. VanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob. Agents Ch. 54, 4643-4647.
  • Zmantar T., Kouidhi B., Miladi H., Bakhrouf A., 2011. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res. Notes. 4, 453.
  • Zou L. K., Wang H. N., Zeng B., Li J. N., Li X. T., Zhang A. Y., Zhou Y. S., Yang X., Xu C. W., Xia Q. Q., 2011. Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China. New Microbiol. 34, 73-80.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p67kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.