Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 665-675

Article title

Osteoimmunologia, czyli o wzajemnych oddziaływaniach komórek układów kostnego i odpornościowego

Authors

Content

Title variants

EN
Osteoimmunology - interactions of the immune cells and bone tissue

Languages of publication

PL EN

Abstracts

PL
Wzajemne oddziaływania pomiędzy komórkami układu odpornościowego, a komórkami tkanki kostnej są opisywane od ponad 40 lat. Pomimo upływu czasu, w polskiej literaturze, stosunkowo rzadko się o nich wspomina, a termin osteoimmunologia będący określeniem interdyscyplinarnej nauki zajmującej się tymi oddziaływaniami, praktycznie nie jest używany. Celem niniejszego artykułu jest próba przybliżenia tej dziedziny wiedzy, opisania nowości w spojrzeniu na regulację metabolizmu tkanki kostnej oraz zwrócenia uwagi na szerszy kontekst regulacyjny, związany z istnieniem osi nerki - kości - jelito. Homeostaza zarówno poziomu składników mineralnych osocza krwi, jak i gęstości mineralnej kości zostaje zachowana na skutek dynamicznych zmian aktywności komórek kościotwórczych osteoblastów, komórek kościogubnych osteoklastów oraz osteocytów, będących jedną z końcowych form dojrzewających osteoblastów, aktywnie regulujących te procesy. Równowaga pomiędzy aktywnością wszystkich typów komórek jest regulowana między innymi przez hormony i cytokiny oraz przez bezpośredni kontakt z komórkami odpornościowymi. Czynniki te wpływają na poziom uwalniania i odkładania substancji mineralnych, odpowiednio przez osteoklasty i osteoblasty.
EN
Interactions between cells of the immune system and cells of bone tissue are reported for over 40 years. Despite the passage of time, relatively little about them is mentioned in Polish literature and the term osteoimmunology is practically not used. The purpose of this article is an attempt to outline shortly current knowledge in this field, with particular attention paid to regulation of bone tissue metabolism linked to the existence of the kidney-bone-gut axis.. Homeostasis of both the level of minerals in the blood plasma and the mineral density of the bone is maintained as a result of dynamic changes in the activity of osteoblasts, osteoklasts and osteocytes, being one of the final forms of maturing osteoblasts, actively regulating these processes. The balance between the activities of these cells is regulated by, inter alia, hormones and cytokines as well as direct contact with immune cells. These factors affect the level of mineral release and deposition by osteoclasts and osteoblasts, respectively.

Journal

Year

Volume

66

Issue

4

Pages

665-675

Physical description

Dates

published
2017

Contributors

  • Zakład Fizjologii Zwierząt, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland

References

  • Addison W. N., Nakano Y., Loisel T., Crine P., McKee M. D., 2008. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: An inhibition regulated by PHEX cleavage of ASARM. J. Bone Mineral Res. 23, 1638-1649.
  • Addison W. N., Masica D. L., Gray J. J., McKee M. D., 2010. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J. Bone Mineral Res. 25, 695-705.
  • Arron J. R., Choi Y., 2000. Bone versus immune system. Nature 408, 535-536.
  • Calvi L. M., Adams G. B., Weibrecht K. W., Weber J. M., Olson D. P., Knight M. C., Martin R. P., Schipani E., Divieti P., Bringhurst F. R., Milner L. A., Kronenberg H. M., Scadden D. T., 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841-846.
  • Chang J., Wang Z., Tang E., Fan Z., McCauley L., Franceschi R., Guan K., Krebsbach P. H., Wang C. Y., 2009. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat. Med. 15, 682-689.
  • Charles J. F., Ermann J., Aliprantis A. O., 2015. The intestinal microbiome and skeletal fitness: Connecting bugs and bones. Clin. Immunol. 159, 163-169.
  • Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G., 2016. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96, 365-408.
  • Cochran D. L., 2008. Inflammation and bone loss in periodontal disease. J. Periodontol. 79, 1569-1576.
  • Crenshaw T. D., Rortvedt L. A., Hassen Z., 2011. Triennial Growth Symposium: a novel pathway for vitamin D-mediated phosphate homeostasis: implications for skeleton growth and mineralization. J.Animal Sci. 89, 1957-1964.
  • Dewhirst F. E., Stashenko P. P., Mole J. E., Tsurumachi T., 1985. Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. J. Immunol. 135, 2562-2568.
  • Francis F., Hennig S., Korn B., Reinhardt R., Dejong P., Poustka A., Lehrach H., Rowe P. S. N., Goulding J. N., Summerfield T., Mountford R., Read A. P., Popowska E. i współaut, 1995. A Gene (Pex) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130-136.
  • Franquinho F., Liz M. A., Nunes A. F., Neto E., Lamghari M., Sousa M. M., 2010. Neuropeptide Y and osteoblast differentiation - the balance between the neuro-osteogenic network and local control. FEBS J. 277, 3664-3674.
  • Greenblatt M. B., Shim J. H., 2013. Osteoimmunology: a brief introduction. Immune Network 13, 111-115.
  • Horton J. E., Raisz L. G., Simmons H. A., Oppenheim J. J., Mergenhagen S. E., 1972. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 177, 793-795.
  • Hu M. C., Shi M., Zhang J., Pastor J., Nakatani T., Lanske B., Razzaque M. S., Rosenblatt K. P., Baum M. G., Kuro-o M., Moe O. W., 2010. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438-3450.
  • Karmakar S., Kay J., Gravallese E. M., 2010. Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheumat. Dis. Clin. North Am. 36, 385-404.
  • Kędzierska U., Salah Y., Kiela P. R., Majewski P. M., 2013. Involvement of poly(ADP-ribosyl)ation in regulation of human osteoblast function after tumor necrosis factor treatment in vitro. 2nd Joint Meeting of the International Bone and Mineral Society and the Japanese Society for Bone and Mineral Research, Kobe, Japan.
  • Kiela P. R., Ghishan F. K., 2009. Recent advances in the renal-skeletal-gut axis that controls phosphate homeostasis. Lab. Investig. 89, 7-14.
  • Kikuchi T., Matsuguchi T., Tsuboi N., Mitani A., Tanaka S., Matsuoka M., Yamamoto G., Hishikawa T., Noguchi T., Yoshikai Y., 2001. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol. 166, 3574-3579.
  • Kim Y. G., Lee C. K., Nah S. S., Mun S. H., Yoo B., Moon H. B., 2007. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Comm. 357, 1046-1052.
  • Kong Y. Y., Feige U., Sarosi I., Bolon B., Tafuri A., Morony S., Capparelli C., Li J., Elliott R., McCabe S., Wong T., Campagnuolo G., Moran E., Bogoch E. R., Van G., Nguyen L. T. i współaut., 1999. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304-309.
  • Kotake S., Udagawa N., Takahashi N., Matsuzaki K., Itoh K., Ishiyama S., Saito S., Inoue K., Kamatani N., Gillespie M. T., Martin T. J., Suda T., 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Investig. 103, 1345-1352.
  • Kurosu H., Yamamoto M., Clark J. D., Pastor J. V., Nandi A., Gurnani P., McGuinness O. P., Chikuda H., Yamaguchi M., Kawaguchi H., Shimomura I., Takayama Y., Herz J., Kahn C. R., Rosenblatt K. P., Kuro-o M., 2005. Suppression of aging in mice by the hormone Klotho. Science 309, 1829-1833.
  • Lanske B., Razzaque M. S., 2007. Mineral metabolism and aging: the fibroblast growth factor 23 enigma. Curr. Opin. Nephrol. Hypertens. 16, 311-318.
  • Liu S., Guo R., Simpson L. G., Xiao Z. S., Burnham C. E., Quarles L. D., 2003. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278, 37419-37426.
  • Majewski P. M., Thurston R. D., Ramalingam R., Kiela P. R., Ghishan F. K., 2010. Cooperative role of NF-{kappa}B and poly(ADP-ribose) polymerase 1 (PARP-1) in the TNF-induced inhibition of PHEX expression in osteoblasts. J. Biol. Chem. 285, 34828-34838.
  • Małyszko J., 2009. Białko Klotho a przewlekła choroba nerek. Forum Nefrol. 2, 69-73.
  • Mao D., Epple H., Uthgenannt B., Novack D. V., Faccio R., 2006. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Investig. 116, 2869-2879.
  • Martin A., David V., Laurence J. S., Schwarz P. M., Lafer E. M., Hedge A. M., Rowe P. S. N., 2008. Degradation of MEPE, DMP1, and release of SIBLING ASARM-Peptides (Minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149, 1757-1772.
  • Martin T. J., Romas E., Gillespie M. T., 1998. Interleukins in the control of osteoclast differentiation. Crit. Rev. Eukaryot. Gene Expr. 8, 107-123.
  • Menezes R., Garlet T. P., Letra A., Bramante C. M., Campanelli A. P., Figueira Rde C., Sogayar M. C., Granjeiro J. M., Garlet G. P., 2008. Differential patterns of receptor activator of nuclear factor kappa B ligand/osteoprotegerin expression in human periapical granulomas: possible association with progressive or stable nature of the lesions. J. Endodont. 34, 932-938.
  • Murthy M. B., 2011. Osteoimmunology - Unleashing the concepts. J. Indian Soc. Periodontol. 15, 190-198.
  • Sato K., Suematsu A., Okamoto K., Yamaguchi A., Morishita Y., Kadono Y., Tanaka S., Kodama T., Akira S., Iwakura Y., Cua D. J., Takayanagi H., 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682.
  • Sato N., Takahashi N., Suda K., Nakamura M., Yamaki M., Ninomiya T., Kobayashi Y., Takada H., Shibata K., Yamamoto M., Takeda K., Akira S., Noguchi T., Udagawa N., 2004. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J. Exp. Med. 200, 601-611.
  • Simonet W. S., Lacey D. L., Dunstan C. R., Kelley M., Chang M. S., Luthy R., Nguyen H. Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H. L., Trail G., Sullivan J., Davy E., Bucay N. i współaut., 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309-319.
  • Strom T. M., Francis F., Lorenz B., Boddrich A., Econs M. J., Lehrach H., Meitinger T., 1997. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Human Mol. Genet. 6, 165-171.
  • Suda T., Takahashi N., Udagawa N., Jimi E., Gillespie M. T., Martin T. J., 1999. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.
  • Takayanagi H., Ogasawara K., Hida S., Chiba T., Murata S., Sato K., Takaoka A., Yokochi T., Oda H., Tanaka K., Nakamura K., Taniguchi T., 2000. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605.
  • Uno J. K., Kolek O. I., Hines E. R., Xu H., Timmermann B. N., Kiela P. R., Ghishan F. K., 2006. The role of tumor necrosis factor alpha in down-regulation of osteoblast Phex gene expression in experimental murine colitis. Gastroenterology 131, 497-509.
  • Visnjic D., Kalajzic Z., Rowe D. W., Katavic V., Lorenzo J., Aguila H. L., 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258-3264.
  • Wada T., Nakashima T., Hiroshi N., Penninger J. M., 2006. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17-25.
  • Walsh M. C., Kim N., Kadono Y., Rho J., Lee S. Y., Lorenzo J., Choi Y., 2006. Osteoimmunology: interplay between the immune system and bone metabolism. Ann. Rev. Immunol. 24, 33-63.
  • Wong B. R., Josien R., Choi Y., 1999. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J. Leukocyte Biol. 65, 715-724.
  • Zhang J., Niu C., Ye, L., Huang H., He X., Tong W. G., Ross J., Haug J., Johnson T., Feng J. Q., Harris S., Wiedemann L. M., Mishina Y., Li L., 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836-841. SŁOWNIK

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p665kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.