Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 651-663

Article title

Immunosensoryczne funkcje nerwu błędnego

Content

Title variants

EN
Immunosensory functions of the vagus nerve

Languages of publication

PL EN

Abstracts

PL
Współczesne badania nad komunikacją neuroimmunologiczną pozwalają coraz lepiej zrozumieć odpowiedź odpornościową organizmu oraz zachowania człowieka i zwierząt w chorobie. Jedną z najważniejszych dróg tej komunikacji jest nerw błędny. Jego aferentne zakończenia zbierają informacje bezpośrednio, wykorzystując receptory dla cząsteczek sygnałowych układu odpornościowego oraz pośrednio dzięki komunikacji z innymi, wyspecjalizowanymi komórkami. Wskutek tych procesów ośrodkowy układ nerwowy otrzymuje informacje niezbędne do regulacji odpowiedzi odpornościowej, aktywności hormonalnej i zachowania. Celem niniejszego opracowania jest podsumowanie dotychczasowej wiedzy na temat procesów fizjologicznych pozwalających nerwowi błędnemu na pośredniczenie w komunikacji między pobudzonym układem odpornościowym a ośrodkowym układem nerwowym.
EN
Contemporary research on neuroimmune communication allowed us to expand on our understanding of the immune response as well as human and animals sickness behavior. One of the most important paths of communication is the vagus nerve. Its afferent endings gather information directly thanks to their receptors for signaling molecules of the immune system, as well as indirectly by communicating with other specialized cells. As a result, central nervous system collects information necessary for regulating the immune response, hormonal activity and behavior. The purpose of this work is to summarize our current knowledge on the physiological processes that allow the vagus nerve to mediate the communication between the immune system and the central nervous system.

Journal

Year

Volume

66

Issue

4

Pages

651-663

Physical description

Dates

published
2017

Contributors

  • Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź, Polska
  • Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
  • University of Antwerp, Faculty of Social Sciences, Department of Communication Science, 2000 Antwerp, Belgium, St-Jacobstraat 2
  • Katedra Fizjologii Zwierząt i Człowieka, Wydział Biologii, Uniwersytet Gdański, Wita Stwosza 59, 80-308 Gdańsk, Polska
  • Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
  • Katedra Neurobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź, Polska
  • Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland

References

  • Andriaensen D., Timmermans J. P., Brouns I., Berthoud H. R., Neuhuber W. L., Scheuermann D. W., 1998. Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res. 293, 395-405.
  • Anisman H., Merali Z., 1999. Anhedonic and anxiogenic effects of cytokine exposure. Adv. Exp. Med. Biol. 461, 199-233.
  • Banks W. A., Kastin A. J., Broadwell R. D., 1995. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2, 241-248.
  • Barajon I., Serrao G., Arnaboldi F., Opizzi E., Ripamonti G., Balsari A., Rumio C., 2009. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 57, 1013-1023.
  • Berthoud H. R., Neuhuber W. L., 2000. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1-17.
  • Berthoud H. R., Kressel M., Neuhuber W. L., 1995. Vagal afferent innervation of the rat abdominal paraganglia as revealed by anterograde Di-tracing and confocal microscopy. Acta Anat. 152, 127-132.
  • Besedovsky H., Del Rey A., Sorkin E., 1979. Antigenic competition between horse and sheep red blood cells as a hormone-dependent phenomenon. Clin. Exp. Immunol. 37, 106-113.
  • Besedovsky H., Del Rey A., Sorkin E., Da Prada M., Burri R., Honegger C., 1983. The immune response evokes changes in brain noradrenergic neurons. Science 221, 564-566.
  • Besedovsky H., Del Rey A., Sorkin E., Dinarello C. A., 1986. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652-654.
  • Blatteis C. M., 2004. The cytokine-prostaglandin cascade in fever production: fact or fancy? J. Therm. Biol. 29, 359-368.
  • Blatteis C. M., 2007. The onset of fever: new insights into its mechanism. Prog. Brain Res. 162, 3-14.
  • Blatteis C. M., Sehic E., 1997. Fever: how many circulating pyrogens signal the brain. News Physiol. Sci. 21, 274-284.
  • Critchley H. D., Harrison N. A., 2013. Visceral influences on brain and behavior. Neuron 77, 624-638.
  • Critchley H. D., Wiens S., Rotshtein P., Öhman A., Dolan R. J., 2004. Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189-195.
  • Dantzer R., Kelley K. W., 1989. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci. 44, 1995-2008.
  • Dinarello C. A., 2014. An expanding role for interleukin-1 blockade from gout to cancer. Mol. Med. 20, 43-58.
  • D'Mello C., Swain M. G., 2016. Immune-to-brain communication pathways in inflammation-associated sickness and depression. Curr. Top Behav. Neurosci. 31, 73-94.
  • Dunn A. J., 1989. Psychoneuroimmunology for the psychoneuroendocrinologist: a review of animal studies of nervous system-immune system interactions. Psychoneuroendocrinology 14, 251-274.
  • Dunn A. J., 2002. Mechanisms by which cytokines signal the brain. Int. Rev. Neurobiol. 52, 43-65.
  • Ek M., Kurosawa M., Lundeberg T., Ericsson A., 1998. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J. Neurosci. 18, 9471-9479.
  • Elmquist J. K., Scammell T. E., Saper C. B., 1994. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci. 20, 565-570.
  • Ericsson A., Kovacs K. J., Sawchenko P. E., 1994. A functional neuroanatomical analysis of central pathways subserving the effects of inteleukin-1 on stress-related neuroendocrin neurons. J. Neurosci. 14, 897-913.
  • Fisher A., Mcgregor G. P., Saria A., Philipin B., Kummer W., 1996. Induction of tachynin gene and peptide expression in guinea-pig nodose primary afferent neurons by allergic airway inflammation. J. Clin. Invest. 98, 2284-2291.
  • Goehler L. E., Gaykema R. P. A., Harmmack S. E., Maier S. F., Watkins L. R., 1998a. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 804, 306-310.
  • Goehler L. E., Gaykema R. P. A., Khorsand J., Kleiner J., Schwartz B. A., Maier S. F., Watkins L. R., 1998b. Staphylococcal enterotoxin B induces c-Fos immunoreactivity in rat nervous system. Soc. Neurosci. Abstr. 24, 1611.
  • Goehler L. E., Gaykema R. P. A., Nguyen K. T., Lee J. L., Tilders F. J. H., Maier S. F., Watkins L. R., 1999. Interleukin-1β in immune cells of the abdominal vagus nerve: an immune to nervous link? J. Neurosci. 17, 2799-2806.
  • Goehler L. E., Gaykema R. P. A., Hansen M. K., Anderson K., Maier S. F., Watkins L. R., 2000. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49-59.
  • Granucci F., Zanoni I., Feau S., Ricciardi-Castagnoli P., 2003. Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. EMBO J. 22, 2546-2551.
  • Hans J., Němcová V., Lammens M., Overeem S., Keyse A., 2011. The autonomic nervous system. [W:] Clinical neuroanatomy. Hans J. (red.). Springer Berlin Heidelberg, 565-602.
  • Hart B. L., 1988. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123-137.
  • Janak P. H., Tye K. M., 2015. From circuits to behaviour in the amygdala. Nature 517, 284-292.
  • Kent S., Bluethe R. M., Kelly K. W., Danzer R., 1992. Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 13, 24-28.
  • Kessler W., Diedrich S., Menges P., Ebker T., Nielson M., Partecke L. I., Traeger T., Cziupka K., Van Der Linde J., Puls R., Busemann A., Heidecke C., Maier S., 2012. The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm. 2012, 1-9.
  • Kluger M. J., 1991. Fever: role of pyrogens and cryogens. Physiol. Rev. 71, 93-127.
  • Konsman J. P., Luheshi G. N., Bluthé R. M., Dantzer R., 2000. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur. J. Neurosci. 12, 4434-4446.
  • Laflamme N., Rivest S., 2001. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating Gram-negative bacterial cell wall components. FASEB J. 15, 155-163.
  • Larson S. J., Dunn A. J., 2001. Behavioral effects of cytokines. Brain Behav. Immun. 15, 371-387.
  • Li Y., Xu Z., Yu Y., Yuan H., Xu H., Zhu Q., Wang C., Shi, X., 2014. The vagus nerve attenuates fulminant hepatitis by activating the Src kinase in Kuppfer cells. Scand. J. Immunol. 79, 105-112.
  • Majewska M., Szczepanik M., 2006. The role of toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation. Post. Hig. Med. Dosw. 60, 52-63.
  • Malarkey D. E., Johnson K., Ryan L., Boorman G., Maronpot R. R., 2005. New insights into functional aspects of liver morphology. Toxicol. Pathol. 33, 27-34.
  • McCusker R. H., Kelley K. W., 2013. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J. Exp. Biol. 216, 84-98.
  • Miller H., Zhang J., Kuo Lee R., Patel G. B., Chen W., 2007. Intestinal M cells: the fallible sentinels? World J. Gastroenterol. 13, 1477-1486.
  • Ni K., O'Neill H. C., 1997. The role of dendritic cells in T cell activation. Immunol. Cell Biol. 75, 223-230.
  • Ohira H., Isowa T., Nomura M., Ichikawa N., Kimura K., Miyakoshi M., Yamada J., 2006. Imaging brain and immune association accompanying cognitive appraisal of an acute stressor. Neuroimage 39, 500-514.
  • Ohno H., 2015. Intestinal M cells. J. Biochem. 159, 151-160.
  • Oth T., Vanderlocht J., Van Elssen C. H., Bos G. M., Germeraad W. T., 2016. Pathogen-associated molecular patterns induced crosstalk between dendritic cells, T helper cells, and natural killer helper cells can improve dendritic cell vaccination. Mediators Inflamm. 2016, 1-12.
  • Petrovický P., Němcová V., Hans J., Overeem S., Vos P., 2011. The reticular formation and some related nuclei. [W:] Clinical neuroanatomy. Hans J. (red.). Springer Berlin Heidelberg, 211-247.
  • Quan N., Stern E. L., Whiteside M. B., Herkenham M., 1999. Induction of proinflamatory cytokine mRNA in the brain after peripheral injection of subseptic doses of lipopolisaccharide in the rat. J. Neuroimmunol. 93, 72-80.
  • Rivest S., 2001. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitory-adrenal axis. Psychoneuroendocrinology 26, 761-788.
  • Solomon G. F., 1987. Psychoneuroimmunology: interactions between central nervous system and immune system. J. Neurosci. Res. 18, 1-9.
  • Soszyński D., 2004. The mechanisms of induction and the adaptive value of sickness behavior. Post. Hig. Med. Dosw. 58, 74-82.
  • Śródka A., Gryglewski R. W., Szczepański W., 2006. Browicz or Kupffer cells? Pol. J. Pathol. 57, 183-185.
  • Tewfik T. L., Meyers A. D., 2014. Vagus nerve anatomy. http://emedicine.medscape.com/article/1875813-overview.
  • Thayer J. F., 2009. Vagal tone and the inflammatory reflex. Cleve Clin. J. Med. 76, 23-26.
  • Turbull A. V., Rivier C., 1999. Regulation of the hypothalamic-pituitory-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1-71.
  • Undem B. J., Hubbard W., Weinreich D., 1993. Immunologically induced neuromodulation of guinea pig nodose ganglion neurons. J. Auton. Nerv. Syst. 44, 35-44.
  • Valentine A. D., Meyers C. A., Kling M. A., Richelson E., Hauser P., 1998. Mood and cognitive side effects of interferon-alpha therapy. Semin. Oncol. 25, 39-47.
  • Warner T. D., Mitchell J. A., 2004. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 18, 790-804.
  • Watkins L. R., Goehler L. E., Relton J. K., Tartagila N., Silbert L., Martin D., Maier S. F., 1995a. Blockade of Interleukin-1-induced fever by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183, 27-31.
  • Watkins L. R., Maier S. F., Goehler L. E., 1995b. Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci. 57, 1011-1026.
  • Weinreich D., Moore K. A., Taylor G. E., 1997. Allergic inflammation in isolated vagal sensory ganglia unmasks silent NK-2 tachynin receptors. J. Neurosci. 17, 7683-7693.
  • Weiss T., Straube T., Boettcher J., Hecht H., Spohn D., Miltner W. H., 2008. Brain activation upon selective stimulation of cutaneous C-and Aδ-fibers. Neuroimage 41, 1372-1381.
  • Wieczorek M., Dunn A. J., 2006. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats. Brain Res. 1101, 73-84.
  • Wieczorek M., Świergiel A. H., Pournajafi-Nazarloo H., Dunn A. J., 2005. Physiological and behavioral responses to interleukin-1β and LPS in vagotomized mice. Physiol. Behav. 85, 500-511.
  • Yaron I., Shirazi I., Judovich R., Levartovsky D., Caspi D., Yaron M., 1999. Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2, and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum. 42, 2561-2568.
  • Zorrilla E. P., Luborsky L., Mckay J. R., Rosenthal R., Houldin A., Tax A., Schmidt K., 2001. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav. Immun. 15, 199-226.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p651kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.