PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 4 | 635-649
Article title

Immunometabolizm czyli jak procesy biochemiczne kontrolują funkcje obronne leukocytów

Content
Title variants
EN
Immunometabolism: how biochemical processes control immune responses of leukocytes
Languages of publication
PL EN
Abstracts
PL
W ostatnich latach nową, dynamicznie rozwijającą się gałęzią nauki o odporności jest immunometabolizm. Dział ten bada jak przemiany metaboliczne zachodzące w komórkach układu odpornościowego, wpływają na ich przetrwanie, rozwój, ale także funkcje wykonawcze. W opracowaniu tym opisujemy przebieg podstawowych i pomocniczych szlaków pozyskania energii przez leukocyty, a w szczególności glikolizę, cykl Krebsa, szlak pentozofosforanowy oraz utlenienie kwasów tłuszczowych. Przedstawiamy znaczenie poszczególnych szlaków dla funkcjonowania leukocytów, rozwoju ich fenotypu (np. makrofagów M1 i M2), oraz przełączania szlaków podczas ich aktywacji. Zmiany te mogą wpływać na funkcje obronne w czasie reakcji zapalnej, infekcji lub uszkodzenia tkanek. Z drugiej strony, leukocyty mogą realizować różne programy metaboliczne, celem pozyskania energii do walki z patogenami. Zależność pomiędzy funkcjami obronnymi a metabolizmem rzuca także nowe światło na zrozumienie mechanizmów chorób metabolicznych, a przede wszystkim kompleksowej odpowiedzi immunologicznej.
EN
In recent years, a new branch of immunology called immunometabolism has been established. The discipline focuses on intracellular metabolic changes in immune cells that impact - influence their survival, development, as well as defense mechanisms. Here we provide a brief summary of basic and ancillary metabolic pathways which leukocytes utilize to obtain energy, with a special focus on glycolysis, TCA cycle, penthosophosphate pathway and fatty acid oxidation. Significance of the given metabolic path for leukocyte functioning, phenotype changes (e.g. M1 vs. M2 macrophages) and biochemical changes during activation is discussed. The metabolic changes can in fact shape the effector functions during inflammation, infection or tissue injury. On the other hand, leukocytes can adopt different metabolic programs to gain energy required to eliminate pathogens. An interplay between immunity and metabolism sheds new light on understanding of metabolic diseases but foremost on complex immune responses.
Journal
Year
Volume
66
Issue
4
Pages
635-649
Physical description
Dates
published
2017
Contributors
author
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University,, Gronostajowa 9, 30-387 Kraków, Poland
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University,, Gronostajowa 9, 30-387 Kraków, Poland
References
  • Aktan F., 2004. iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639-653.
  • Alba-Loureiro T. C., Munhoz C. D., Martins J. O., Cerchiaro G. A., Scavone C., Curi R., Sannomiya P., 2007. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz. J. Med. Biol. Res. 40, 1037-1044.
  • Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P., 2002. Molecular biology of the cell. Garland Science, New York.
  • Azevedo E. P., Rochael N. C., Guimarães-Costa A. B., de SouzaVieira T. S., Ganilho J., Saraiva E. M., Palhano F. L., Foguel D., 2015. A metabolic shift towards pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 290, 22174-22183.
  • Borregaard N., Herlin T., 1982. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550-557.
  • Charest P. G., Firtel R. A., 2010. 'TORCing' neutrophil chemotaxis. Dev. Cell. 19, 795-796.
  • Cheng S. C., Quintin J., Cramer R. A., Shepardson K. M., Saeed S., Kumar V., Giamarellos-Bourboulis E. J., Martens J. H., Rao N. A., Aghajanirefah A., Manjeri G. R., Li Y., Ifrim D. C., Arts R. J., van der Veer B. M. i współaut., 2014. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684.
  • Cramer T., Yamanishi Y., Clausen B. E., Förster I., Pawlinski R., Mackman N., Haase V. H., Jaenisch R., Corr M., Nizet V., Firestein G. S., Gerber H.-P., Ferrara N., Jonhnson R. S., 2003. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645-657.
  • Delmastro-Greenwood M. M., Piganelli J. D., 2013. Changing the energy of an immune response. Am. J. Clin. Exp. Immunol. 2, 30-54.
  • Fukuzumi M., Shinomiya H., Shimizu Y., Ohishi K., Utsumi S., 1996. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun. 64, 108-112.
  • Gordon S., Martinez-Pomares L., 2017. Physiological roles of macrophages. Pflugers Arch. 469, 365-374.
  • Haschemi A., Kosma P., Gille L., Evans C. R., Burant C. F., Starkl P., Knapp B., Haas R., Schmid J. A., Jandl C., Amir S., Lubec G., Park J., Esterbauer H., Bilban M., Brizuela L., Pospisilik J. A., Otterbein L. E., Wagner O., 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813-826.
  • Heilbronn L. K., Campbell L. V., 2008. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des. 14, 1225-1230.
  • Imtiyaz H. Z., Simon M. C., 2010. Hypoxia-inducible factors as essential regulators of inflammation. Curr. Top. Microbiol. Immunol. 345, 105-120.
  • Infantino V., Convertini P., Cucci L., Panaro M. A., Di Noia M. A., Calvello R., Palmieri F., Iacobazzi V., 2011. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433-436.
  • Itakura A., McCarty O. J. T., 2013. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am. J. Physiol. Cell Physiol. 305, C348-C354.
  • Jacobs S. R., Herman C. E., Maciver N. J., Wofford J. A., Wieman H. L., Hammen J. J., Rathmell J. C., 2008. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476-4486.
  • Janeway C. A., Travers J. P., Walport M., Shlomchik M. J., 2001. Immunobiology. The immune system in health and disease. Garland Science, New York.
  • Janus A., Smolewski P., 2007. Inhibitory kinazy mTOR w leczeniu ostrej białaczki szpikowej. Acta Haematol. Pol. 38, 203-211.
  • Jha A. K., Huang S. C., Sergushichev A., Lampropoulou V., Ivanova Y., Loginicheva E., Chmielewski K., Stewart K. M., Ashall J., Everts B., Pearce E. J., Driggers E. M., Artyomov M. N., 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430.
  • Jin Z., Wei W., Yang M., Du Y., Wan Y., 2014. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483-498.
  • Jonckheere A. I., Smeitink J. A., Rodenburg R. J., 2012. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225.
  • Kelly B., O'Neill L. A., 2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771-784.
  • Kong T., Eltzschig H. K., Karhausen J., Colgan S. P., Shelley C. S., 2004. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc. Natl. Acad. Sci. USA 101, 10440-10445.
  • Kramer P. A., Ravi S., Chacko B., Johnson M. S., Darley-Usmar V. M., 2014. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2, 206-210.
  • Liu L., Luo Y., Chen L., Shen T., Xu B., Chen W., Zhou H., Han X., Huang S., 2010. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J. Biol. Chem. 285, 38362-38373.
  • Liu W., Shen S.-M., Zhao X.-Y., Chen G.-Q., 2012. Targeted genes and interacting proteins of hypoxia inducible factor-1. Int. J. Biochem. Mol. Biol. 3, 165-178.
  • Lochner M., Berod L., Sparwasser T., 2015. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36, 81-91.
  • Luckheeram R. V., Zhou R., Verma A. D., Xia B., 2012. CD4⁺T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135.
  • Maianski N. A., Geissler J., Srinivasula S. M., Alnemri E. S., Roos D., Kuijpers T. W., 2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 11, 143-153.
  • Martinez F. O., Gordon S., 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 6, 6-13.
  • McInturff A. M., Cody M. J., Elliott E. A., Glenn J. W., Rowley J. W., Rondina M. T., Yost C. C., 2012. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 120, 3118-3125.
  • Michalek R. D., Gerriets V. A., Jacobs S. R., Macintyre A. N., MacIver N. J., Mason E. F., Sullivan S. A., Nichols A. G., Rathmell J. C., 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299-3303.
  • Mills E. L., O'Neill L. A., 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21.
  • Mills E. L., Kelly B., Logan A., Costa A. S., Varma M., Bryant C. E., Tourlomousis P., Däbritz J. H., Gottlieb E., Latorre I., Corr S. C., McManus G., Ryan D., Jacobs H. T., Szibor M., Xavier R. J., Braun T., Frezza C., Murphy M. P., O'Neill L. A., 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457-470.
  • Mueckler M., Thorens B., 2013. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121-138.
  • Nakaya M., Xiao Y., Zhou X., Chang J. H., Chang M., Cheng X., Blonska M., Lin X., Sun S. C., 2014. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692-705.
  • Nazimek K., Bryniarski K., 2012. The biological activity of macrophages in health and disease. Post. Hig. Med. Dosw. 66, 507-520.
  • Netea M. G., Joosten L. A., Latz E., Mills K. H., Natoli G., Stunnenberg H. G., O'Neill L. A., Xavier R. J., 2016. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098.
  • Newsholme P., Lima M. M., Procopio J., Pithon-Curi T. C., Doi S. Q., Bazotte R. B., Curi R., 2003. Glutamine and glutamate as vital metabolites. Braz. J. Med. Biol. Res. 36, 153-163.
  • Nomura M., Liu J., Rovira I. I., Gonzalez-Hurtado E., Lee J., Wolfgang M. J., Finkel T., 2016. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216-217.
  • Nunn A. V., Barnard M. L., Bhakoo K., Murray J., Chilvers E. J., Bell J. D., 1996. Characterisation of secondary metabolites as sociated with neutrophil apoptosis. FEBS Lett. 392, 295-298.
  • O'Neill A. J., O'Neill S., Hegarty N. J., Coffey R. N., Gibbons N., Brady H., Fitzpatrick J. M., Watson R. W., 2000. Glutathione depletion-induced neutrophil apoptosis is caspase 3 dependent. Shock 14, 605-609.
  • O'Neill L. A., Pearce E. J., 2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15-23.
  • O'Neill L. A., Kishton R. J., Rathmell J., 2016. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553-565.
  • Panday A., Sahoo M. K., Osorio D., Batra S., 2015. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 12, 5-23.
  • Pearce E. L., Pearce E. J., 2013. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633-643.
  • Perner A., Nielsen S. E., Rask-Madsen J., 2003. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med. 29, 642-645.
  • Pijanowski Ł., Kołaczkowska E., Chadzińska M., 2011. NET, czyli zewnątrzkomórkowe sieci uwalniane przez neutrofile jako nowy sposób walki z patogenami. Post. Biol. Kom. 38, 547-713.
  • Pithon-Curi T. C., Schumacher R. I., Freitas J. J., Lagranha C., Newsholme P., Palanch A. C., Doi S. Q., Curi R., 2003. Glutamine delays spontaneous apoptosis in neutrophils. Am. J. Physiol. Cell Physiol. 284, C1355-C1361.
  • Rani M., Nicholson S. E., Zhang Q., Schwacha M. G., 2017. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns 43, 297-303.
  • Rao R. R., Li Q., Odunsi K., Shrikant P. A., 2010. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 29, 67-78.
  • Rathmell J. C., 2012. Metabolism and autophagy in the immune system: immunometabolism comes of age. Immunol. Rev. 249, 5-13.
  • Rodríguez-Espinosa O., Rojas-Espinosa O., Moreno-Altamirano M. M., López-Villegas E. O., Sánchez-García F. J, 2015. Metabolic requirements for neutrophil extracellular traps formation. Immunology 145, 213-224.
  • Rodríguez-Prados J. C., Través P. G., Cuenca J., Rico D., Aragonés J., Martín-Sanz P., Cascante M., Boscá L., 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605-614.
  • Roiniotis J., Dinh H., Masendycz P., Turner A., Elsegood C. L., Scholz G. M., Hamilton J. A., 2009. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J. Immunol. 182, 7974-7981.
  • Sbarra A. J., Karnovsky M. L., 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234, 1355-1362.
  • Schor H., Vaday G. G., Lider O., 2000. Modulation of leukocyte behavior by an inflamed extracellular matrix. Dev. Immunol. 7, 227-238.
  • Schuster D. P., Brody S. L., Zhou Z., Bernstein M., Arch R., Link D., Mueckler M., 2007. Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L845-L851.
  • Siler U., Romao S., Tejera E., Pastukhov O., Kuzmenko E., Valencia R. G., Meda Spaccamela V., Belohradsky B. H., Speer O., Schmugge M., Kohne E., Hoenig M., Freihorst J., Schulz A. S., Reichenbach J., 2017. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. J. Allergy Clin. Immunol. 139, 212-219.
  • Strehl C., Fangradt M., Fearon U., Gaber T., Buttgereit F., Veale D. J., 2014. Hypoxia: how does the monocyte-macrophage system respond to changes in oxygen availability? J. Leukoc. Biol. 95, 233-241.
  • Stryer L., Berg J. M., Tymoczko J. L., 2003. Biochemia. PWN, Warszawa.
  • van der Windt G. J., Everts B., Chang C. H., Curtis J. D., Freitas T. C., Amiel E., Pearce E. J., Pearce E. L., 2012. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68-78.
  • van Greevenbroek M. M., Schalkwijk C. G., Stehouwer C. D., 2013. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 71, 174-187.
  • Vats D., Mukundan L., Odegaard J. I., Zhang L., Smith K. L., Morel C. R., Wagner R. A., Greaves D. R., Murray P. J., Chawla A., 2006. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13-24.
  • Walmsley S. R., Print C., Farahi N., Peyssonnaux C., Johnson R. S., Cramer T., Sobolewski A., Condliffe A. M., Cowburn A. S., Johnson N., Chilvers E. R., 2005. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 2201, 105-115.
  • Wang R., Green D. R., 2012. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev.249,14-26.
  • Wang R., Dillon C. P., Shi L. Z., Milasta S., Carter R., Finkelstein D., McCormick L. L., Fitzgerald P., Chi H., Munger J., Green D. R., 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882.
  • Wasinski F., Gregnani M. F., Ornellas F. H., Bacurau A. V. N., Câmara N. O., Araujo R. C., Bacurau R. F., 2014. Lymphocyte glucose and glutamine metabolism as targets of the anti-inflammatory and immunomodulatory effects of exercise. Mediators Inflamm. 2014, 10.
  • Weichhart T., Säemann M. D., 2009. The multiple facets of mTOR in immunity. Trends Immunol. 30, 218-226.
  • Weichhart T., Hengstschläger M., Linke M., 2015. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599-614.
  • Weinberg S. E., SenaL. A., Chandel N. S., 2015. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406-417.
  • West A. P., Brodsky I. E., Rahner C., Woo D. K., Erdjument-Bromage H., Tempst P., Walsh M. C., Choi Y., Shadel G. S., Ghosh S., 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480.
  • Wood I. S., Trayhurn P., 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89, 3-9.
  • Yang K., Shrestha S., Zeng H., Karmaus P. W., Neale G., Vogel P., Guertin D. A., Lamb R. F., Chi H., 2013. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043-1056.
  • Yaqoob P., Calder P. C., 1997. Glutamine requirement of proliferating T lymphocytes. Nutrition 13, 646-651.
  • Zhang J., Wright W., Bernlohr D. A., Cushman S. W., Chen X., 2007. Alterations of the classic pathway of complement in adipose tissue of obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 292, E1433-E1440.
  • Zyzak J., Matuszyk J., Siednienko J., 2013. Wieloetapowy proces dojrzewania receptora Toll-podobnego 9. Post. Hig. Med. Dosw. 67, 1034-1046.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p635kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.