Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 623-634

Article title

Wyrzut zewnątrzkomórkowych sieci neutrofilowych (NET) przez neutrofile i co dalej? Konsekwencje tworzenia i nieprawidłowego usuwania NET

Content

Title variants

EN
Beyond release of neutrophil extracellular traps (NETs) by neutrophils: on collateral consequences of their release and impaired removal

Languages of publication

PL EN

Abstracts

PL
Neutrofilowe sieci zewnątrzkomórkowe (NET) to niedawno odkryty mechanizm, dzięki któremu neutrofile mogą skutecznie walczyć z patogenami. W wyniku aktywacji neutrofile wyrzucają zdekondensowany DNA, połączony z histonami i białkami pochodzącymi z ziarnistości. Te przestrzenne struktury mogą wyłapywać, ograniczać rozprzestrzenianie się, a w niektórych przypadkach zabijać patogeny. Pomimo korzystnych efektów, NET są także odpowiedzialne za patogenezę różnych chorób autoimmunizacyjnych, takich jak reumatoidalne zapalenie stawów, łuszczyca czy toczeń rumieniowaty układowy, a także przyczyniają się do uszkodzeń narządów w trakcie sepsy. Jak dotąd niewiele wiadomo o tym jak NET są usuwane z naczyń krwionośnych i narządów oraz przez które komórki. Istniejące, nieliczne doniesienia wskazują na udział makrofagów w usuwaniu NET, jednakże wyniki te pochodzą tylko z eksperymentów in vitro. Otwartym pozostaje zatem pytanie o mechanizmy tego procesu w skomplikowanym środowisku żywego organizmu. W związku z patologicznym aspektem tworzenia NET, ważnym będzie opracowanie skutecznego środka farmakologicznego zdolnego do usuwania tych struktur.
EN
Neutrophil extracellular traps (NET) represent a recently discovered mechanism by which neutrophils can efficiently fight pathogens. Upon activation, neutrophils release decondensed extracellular DNA decorated with histones and granular proteins. These three-dimensional structures can trap pathogens, limit their spread and sometimes kill them. Despite their beneficial effects, NETs are also involved in pathogenesis of various autoimmune diseases, such as rheumatoid arthritis, psoriasis or systemic lupus erythematosus, and also contribute to organ damage during sepsis. So far, little is known on how NETs are removed from vasculature and tissues, and by which cells. Limited available studies indicate that macrophages might remove NETs, but these results were obtained in vitro. Thus it remains unknown how this process occurs in a complex milieu of the body. Due to the pathological aspect of NET formation, a challenge for the near future will be development of pharmacological agents capable of NET removal.

Journal

Year

Volume

66

Issue

4

Pages

623-634

Physical description

Dates

published
2017

Contributors

  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

References

  • Bianchi M., Hakkim A., Brinkmann V., Ulrich S., Reinhard A. S., Zychlinsky A., Reichenbach J., 2009. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114, 2619-2622.
  • Borregaard N., 2010. Neutrophils, from marrow to microbes. Immunity 33, 657-670.
  • Bosch X., 2011. Lupus erythematosus and the neutrophil.Clin. Implicat. Basic Res. Syst. 8, 6-8.
  • Brill A., Fuchs T. A., Savchenko A. S., Thomas G. M., Martinod K., de Meyer S. F., Bhandari A. A., Wagner D. D., 2012. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136-144.
  • Brinkmann V., Zychlinsky A., 2007. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5, 577-582.
  • Brinkmann V., Zychlinsky A., 2012. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198, 773-783.
  • Brinkmann V., Reichard U., Goosman C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A., 2004. Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535.
  • Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., Nizet V., 2006. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396-400.
  • Chang H. J., Jynm C., Glass R. M., 2010. Sepsis. J. Am. Med. Assoc. 304, 1856.
  • Chemin K., Klareskog L., Malmström V., 2016. Is rheumatoid arthritis an autoimmune disease? Curr. Opin. Rheumatol. 28, 181-118.
  • Chen G. Y., Nuñez G., 2010. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826-837.
  • Chen M., Kallenberg C. G. M., 2009. New advances in the pathogenesis of ANCA-associated vasculitides. Clini. Exp. Rheumatol. 27, 108-114.
  • Chow O. A., Von Köckritz-Blickwede M., Bright A. T., Hensler M. E., Zinkernagel A. S., Cogen A. L., Gallo R. L., Monestier M., Wang Y., Glass C. K., Nizet V., 2010. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445-454.
  • Chowdhury C. S., Giaglis S., Walker U. A., Buser A., Hahn S., Hasler P., 2014. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthrit. Res. Ther. 16, R122.
  • Clark S. R., Ma A. C., Tavener S. A., McDonald B., Goodarzi Z., Kelly M. K., Patel K. D., Chakrabatri S., McAvoy E., Sinclair G. D., Keys E. M., Allen-Vercoe E., DeVinney R., Doig C. J., Green F. H. Y., Kubes P., 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med.13, 463-469.
  • Crispín J. C., Liossis S.-N. C., Kis-Toth K., Lieberman L. A., Kyttaris V. C., Juang Y.-T., Tsokos G. C., 2010. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol. Med. 16, 47-57.
  • Czaikoski P. G., Mota J. M. S. C., Nascimento D. C., Sônego F., Castanheira F. V. E. S., Melo P. H., Scortegagna G. T., Silva R. L., Barroso-Sousa R., Souto F. O., Pazin-Filho A., Figueiredo F., Alves-Filho J. C., Cunha F. Q., 2016. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 11, 1-19.
  • Davis J. C., Manzi C., Yarboro C., Rairie J., Mcinnes I., Averthelyi D., Sinicropi D., Hale V. G., Balow J., Austin H., Boumpas D. T., Klippel J. H., 1999. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68-76.
  • Esmon C. T., 2009. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 23, 225-29.
  • Farrera C., Fadeel B., 2013. Macrophage clearance of neutrophil extracellular traps is a silent process. J. Immunol. 191, 2647-2656.
  • Fauzi A. R., Kong N. C. T., Chua M. K., Jeyabalan V., Idris M. N., Azizah R., 2004. Antibodies in systemic lupus antineutrophil cytoplasmic erythematosus: prevalence, disease activity correlations and organ system associations. Med. J. Malaysia 59, 372-377.
  • Fuchs T. A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A., 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231-241.
  • Fuchs T. A., Alexander B., Duerschmied D., Schatzberg D., Monestier M., Myers D. D., Wrobleski S. K., Wakefield T. W., Hartwig J. H., Wagner D. D., 2010. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 107, 15880-15885.
  • Gould T. J., Lysov Z., Liaw P. C., 2015. Extracellular DNA and histones: double-edged swords in immunothrombosis. J. Thromb. Haemost. 13, 82-91.
  • Grässle S., Huck V., Pappelbaum K. I., Gorzelanny C., Aponte-Santamaría C., Baldauf C., Gräter F., Schneppenheim R., Obser T., Schneider S. W., 2014. Von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscl. Thromb. Vasc. Biol. 34, 1382-89.
  • Gupta A. K., Joshi M. B., Philippova M., Erne P., Hasler P., Hahn S., Resink T. J., 2010. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 584, 3193-3197.
  • Hakkim A., Fürnrohr B. G., Amann K., Laube B., Abu Abed U., Brinkmann V., Herrmann M., Voll R. E., Zychlinsky A., 2010. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 107, 9813-9818.
  • Hazeldine J., Hampson P., Lord J. M., 2014. The impact of trauma on neutrophil function. Injury 45, 1824-1833.
  • Hu S., Yu H., Yen F., Lin C., Che G., Lan C., 2016. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Scient. Rep. 6, 31119.
  • Iwashyna T. J., Wesley E. E., Smith D. M., Langa K. M., 2011. Long-term cognitive impairment and functional disability among survivors of severe sepsis. J. Am. Med. Assoc. 304, 1787-1794.
  • Kambas K., Mitroulis I., Konstantinos R., 2012. The emerging role of neutrophils in thrombosis - the journey of TF through NETs. Front. Immunol. 3, 1-8.
  • Kessenbrock K., Krumbholz M., Schönermarck U., Back W., Gross W. L., Werb Z., Gröne H-J., Brinkmann V., Jenne D. E., 2009. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med.15, 623-625.
  • Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J. S., Friday S., Li S., Patel R. M., Subramanian V., Thompson P., Chen P., Fox D. A., Pennathur S., Kaplan M. J., 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40.
  • Kolaczkowska E., Kubes P., 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159-175.
  • Kolaczkowska E., Jenne C.N., Surewaard B. G. J., Thanabalasuriar A., Lee W.-Y., Sanz M.-J., Mowen K., Opdenakker G., Kubes P., 2015. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Comm. 6, 6673.
  • Kowal C., DeGiorgio L. A., Lee L. Y., Edgar M. E., Huerta P. T., Volpe B. T., Diamond B., 2006. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl. Acad. Sci. USA 103, 19854-19859.
  • Lacks S. A., 1981. Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J. Biol. Chem.256, 2644-2648.
  • Lande R., Ganguly D., Facchinetti V., Frasca L., Curdin Conrad, Josh Gregorio, Meller S., Chamilos G., Sebasigari R., Riccieri V., Bassett R., Amuro H., Fukuhara S., Ito T., Liu Y.-J., Gilliet M., 2011. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19.
  • Lauber K., Blumenthal S. G., Waibel M., Wesselborg S., 2004. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277-287.
  • Li P., Li M., Lindberg M. R., Kennett M. J., Xiong N., Wang Y., 2010. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853-1862.
  • Luo L., Zhang S., Wang Y., Rahman M., Syk I., Zhang E., Thorlacius H., 2014. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L586-L596.
  • Makrygiannakis D., af Klint E., Lundberg I. E., Löfberg R., Ulfgren A-K., Klareskog L., Catrina A. I., 2006. Citrullination is an inflammation-dependent process. Ann. Rheumat. Dise. 65, 1219-1222.
  • Manson J. J., Ma A., Rogers P., Mason L. J., Berden J. H., van der Vlag J., D'Cruz D. P., Isenberg D. A., Rahman A., 2009. Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: a prospective longitudinal study. Arthritis Res. Ther. 11, R154.
  • Martinod K., Melanie D., Fuchs T. A., Wong S. L., Brill A., Gallant M., Hu J., Wang Y., Wagner D. D., 2013. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl. Acad. Sci. USA 110, 8674-8679.
  • Martinod K., Witsch T., Farley K., Gallant M., Remold-O'Donnell E., Wagner D. D., 2016. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J. Thromb. Haemost. 14, 551-58.
  • Massberg S., Grahl L., von Bruehl M-L, Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., Lorenz M., Bidzhekov K., Khandagale A. B., Konrad I., Kennerknecht E., Reges K., Holdenrieder S., Braun S., Reinhardt C., Spannagl M., Preissner K. T., Engelmann B., 2010. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887-896.
  • McDonald B., Urrutia R., Yipp B. G., Jenne C. N., Kubes P., 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324-333.
  • Murphy G., Nagase H., 2008. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat. Rev. Rheumatol. 4, 128-135.
  • Nagata S., 2005. DNA degradation in development and programmed cell death. Ann. Rev. Immunol. 23, 853-875.
  • Nagata S., Kawane K., 2011. Autoinflammation by endogenous DNA. Adv. Immunol. 10, 139-161.
  • Nakazawa D., Shida H., Kusunoki Y., Miyoshi A., Nishio S., Tomaru U., Atsumi T., Ishizu A., 2016. The responses of macrophages in interaction with neutrophils that undergo NETosis. J. Autoimmun. 67, 19-28.
  • Nauseef W. M., Borregaard N., 2014. Neutrophils at work. Nat. Immunol. 15, 602-611.
  • Nazimek K., Bryniarski K., 2012. The biological activity of macrophages in health and disease. Post. Hig. Med. Dośw. 66, 507-520.
  • O'Sullivan K. M., Lo C. Y., Summers S. A., Elgass K. D., McMillan P. J., Longano A., Ford S. L. Gan P.-Y., Kerr P. G., Kitching A. R., Holdsworth S. R., 2015. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Internat. 88, 1030-1046.
  • Papayannopoulos V., Metzler K. D., Hakkim A., Zychlinsky A., 2010. Neutrophil elastase and myeloperoxidase regulate the formation of eutrophil extracellular traps. J. Cell Biol. 191, 677-691.
  • Pilsczek F. H., Salina D., Poon K. K. H., Fahey C., Yipp B. G., Sibley C. D., Robbins S.M., Green F. H. Y., Surette M. G., Sugai M., Bowden G., Hussain M., Zhang K., Kubes P., 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185, 7413-7425.
  • Pratesi F., Dioni I., Tommasi C., Alcaro A. C., Paolini I., Barbetti F., Boscaro F., Panza F., Puxeddu I., Rovero P., Migliorini P., 2014. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheumat. Dise. 73, 1414-1422.
  • Rochael N. C., Guimarães-Costa A. B., Nascimento M. T. C., DeSouza-Vieira T., Oliveira M. P., Garcia e Souza L. F., Oliveira M. F., Saraiva E. M., 2015. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scien. Rep. 5, 18302.
  • Ruiz-Irastorza G., Crowther M., Branch W., Khamashta M. A., 2010. Antiphospholipid syndrome. Lancet 376, 1498-1509.
  • Skrzeczynska-Moncznik J., Zabieglo K., Bossowski J. P., Osiecka O., Wlodarczyk A., Kapinska-Mrowiecka M., Kwitniewski M., Majewski P., Dubin A., Cichy J., 2017. Eosinophils regulate interferon alpha production in plasmocytoid dendritic cells stimulated with components of neutrophil extracellular traps. J. Interf. Cytokine Res. 37, 119-128.
  • Smith C. K., Kaplan M. J., 2015. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Int. Immunopharmacol. 27, 448-453.
  • Steinberg B. E., Grinstein S., 2007. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Science's STKE : Signal Transduction Knowledge Environment 379, pe11.
  • Tamkovich S. N., Cherepanova A. V., Kolesnikova E. V., Rykova E. Y., Pyshnyi D.V., Vlassov V. V., Laktionov P. P., 2006. Circulating DNA and DNase activity in human blood. Ann. NY Acad. Sci.1075, 191-196.
  • Tsokos G. C., 2011. Systemic Lupus Erythematosus. New Engl. J. Med. 365, 2110-2121.
  • Urban C. F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., Brinkmann V., Jungblut P. R., Zychlinsky A., 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Path. 5, e1000639.
  • Viatte S., Plant D., Raychaudhuri S., 2013. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141-153.
  • Wang Y., Li M., Stadler S., Correll S., Li P., Wang D., Hayama R., Leonelli L., Han H., Grigoryev S. A., Allis C. D., Coonrod S. A., 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205-213.
  • Wright H. L., Moots R. J., Edwards S. W., 2014. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol.10, 593-601.
  • Yipp B. G., Kubes P., 2016. NETosis: how vital is it ? Blood 122, 2784-2795.
  • Yoshida M., Sasaki M., Sugisaki K., Yamaguchi Y., Yamada M., 2013. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin. Kidney J. 6, 308-312.
  • Yu Y., Su K., 2013. Neutrophil extracellular traps and systemic lupus erythematosus. J. Clin. Cell. Immunol. 4, 139.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p623kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.