PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 4 | 609-621
Article title

Receptory rozpoznające wirusowe kwasy nukleinowe w odpowiedzi przeciwwirusowej ryb

Content
Title variants
EN
Receptors recognizing viral nucleic acids during immune response of fish
Languages of publication
PL EN
Abstracts
PL
Kluczowym etapem nieswoistej reakcji odpornościowej organizmu na zakażenie wirusowe jest szybkie wykrycie obecności wirusów w komórce i aktywacja syntezy interferonów (IFN) typu I. Wirusowe kwasy nukleinowe (DNA i RNA) są głównymi strukturami pochodzenia wirusowego rozpoznawanymi przez receptory wrodzonego układu odpornościowego. Wśród receptorów rozpoznających te struktury bardzo istotną rolę odgrywają receptory Toll-podobne (TLR) i RIG-I-podobne (RLR). Wiele z tych receptorów opisanych u ssaków występuje także u ryb, chociaż z drugiej strony ryby posiadają także receptory, które nie zostały zidentyfikowane u ssaków. Ryby, które są pierwszymi kręgowcami z pełni rozwiniętym układem odpornościowym wrodzonym i nabytym, stanowią doskonały model do badania ewolucji mechanizmów odporności u kręgowców. W pracy przedstawiono receptory rozpoznające wirusowe kwasy nukleinowe opisane u ryb oraz główne białka adaptorowe biorące udział w przekazywaniu sygnału wewnątrzkomórkowego w celu aktywacji syntezy IFN typu I i cytokin prozapalnych.
EN
Recognition of the non-self signature of invading viruses is a crucial step for the initiation of the anti-viral innate immune defense mechanisms including interferon (IFN) type I production. Viral nucleic acids occur the main virus-derived structures to be recognized by the receptors of the innate immune system. There are a number of receptors that recognize viral nucleic acids among which the most important are Toll-like receptors (TLR) and RIG-I-like receptors (RLR). Many of those receptors described in mammals have been also found in fish, although fish possess some specific receptors which have not been characterized in mammals. Teleost fish represent a relevant model for the study of the core immune mechanisms activated by viral infections. In this work we review the current knowledge about the fish receptors for viral nucleic acids and the main adaptor proteins involved in signaling pathways for the activation IFN type I and pro-inflammatory cytokine synthesis.
Journal
Year
Volume
66
Issue
4
Pages
609-621
Physical description
Dates
published
2017
Contributors
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
References
  • Ahmad S., Hur S., 2015. Helicases in antiviral immunity: dual properties as sensors and effectors. Trends Biochem. Sci. 40, 576-585.
  • Akira S., Uematsu S., Takeuchi O., 2006. Pathogen recognition and innate immunity. Cell 124, 783-801.
  • Aoki T., Hikima J., Hwang S. D., Jung T. S., 2013. Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol. 35, 1689-1702.
  • Ariumi Y., Kuroki M., Abe K., Dansako H., Ikeda M., Wakita T., Kato N., 2007. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J. Virol. 81, 139220-139226.
  • Bandurska K., Król I., Myga-Nowak M., 2014. Interferony: między strukturą a funkcją. Postepy Hig. Med. Dosw. 68, 428-440.
  • Bergan V., Jagus R., Lauksund S., Kileng Ø., Robertsen B., 2008. The Atlantic salmon Z-DNA binding protein kinase phosphorylates translation initiation factor 2 alpha and constitutes a unique orthologue to the mammalian dsRNA-activated protein kinase R. FEBS J. 275, 184-97.
  • Cao X., Chen J., Cao Y., Nie G., Wan Q., Wang L., Su J., 2015. Identification and expression of the laboratory of genetics and physiology 2 gene in common carp Cyprinus carpio. J. Fish Biol. 86, 74-91.
  • Chang M., Collet B., Nie P., Lester K., Campbell S., Secombes C. J., Zou J., 2011. Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in rainbow trout (Oncorhynchus mykiss). J. Virol. 85, 8403-8412.
  • Chen H.-Y., Liu W., Wu S.-Y., Chiou P.P., Li Y.-H., Chen Y.-C., Lin G.-H., Lu M.-W., Wu J.-L., 2015. RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells. Fish Shellfish Immunol. 43, 427-435.
  • Chen X., Wang Q., Yang C., Rao Y., Li Q., Wan Q., Peng L., Wu S., Su J., 2013. Identification, expression profiling of a grass carp TLR8 and its inhibition leading to the resistance to reovirus in CIK cells. Dev. Comp. Immunol. 41, 82-93.
  • Chen X., Yang C., Su J., Rao Y., Gu T., 2015. LGP2 plays extensive roles in modulating innate immune responses in Ctenopharyngodon idella kidney (cik) cells. Dev. Comp. Immunol. 49, 138-148.
  • Cordin O., Banroques J., Tanner N. K., Linder P., 2006. The DEAD-box protein family of RNA helicases. Gene 367, 17-37.
  • Deleris A., Gallego-Bartolome J., Bao J., Kasschau K. D., Carrington J. C., Voinnet O., 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science. 313, 68-71.
  • DeWitte-Orr S. J., Collins S. E., Bauer C. M., Bowdish D. M., Mossman K. L., 2010. An accessory to the 'trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog., 6, e1000829.
  • Ding S.-W., Voinnet O., 2007. Antiviral immunity directed by small RNAs. Cell 130, 413-426.
  • Fullam A., Schroder M., 2013. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim. Biophys. Acta 1829, 854-865.
  • Fuller-Pace F. V., 2006. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34, 4206-4215.
  • Fuller-Pace F. V., 2013. DEAD box RNA helicase functions in cancer. RNA Biol. 10, 121-132.
  • Gantier M. P., Tong S., Behlke M. A., Xu D., Phipps S., Foster P. S., Williams B. R., 2008.TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J. Immunol. 180, 2117-2124.
  • Gieryńska M., Schollenberger A., 2011. Molekularne rozpoznawanie zakażeń wirusowych - stymulacja odpowiedzi immunologicznej. Post. Hig. Med. Dosw. 65, 299-313.
  • Gorbalenya A. E., Koonin E. V., 1993. Helicases: amino acid sequence comparisons and structure - function relationships. Curr. Opin. Struct. Biol. 3, 419-429.
  • Gu L., Fullam A., Brennan R., Schroder M., 2013. Human DEAD box helicase 3 couples IkB kinase ε to interferon regulatory factor 3 activation. Mol. Cell. Biol. 33, 2004-2015.
  • Haas T., Poeck H., 2012. Apoptosis induction by cytosolic RNA helicases. J. Med. Microb. Diagn. 1, 117.
  • He J., Liu H., Wu C., 2014. Identification of SCARA3, SCARA5 and MARCO of class A scavenger receptor-like family in Pseudosciaena crocea. Fish Shellfish Immunol. 41, 238-249.
  • Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S., 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529.
  • Hemmi H., Kaisho T., Takeuchi O., Sato S., Sanjo H., Hoshino K., Horiuchi T., Tomizawa H., Takeda K., Akira S., 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196-200.
  • Hu G.-B., Zhang S.-F., Yang X., Liu D.-H., Liu Q.-M., Zhang S.-C., 2015. Cloning and expression analysis of a toll-like receptor 22 (TLR22) gene from turbot, Scophthalmus maximus. Fish Shellfish Immunol. 44, 399-409.
  • Huang X.-N., Wang Z.-Y., Yao C.-L., 2011. Characterization of toll-like receptor 3 gene in large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol. 31, 98-106.
  • Hwang S. D., Ohtani M., Hikima J.-I., Jung T. S., Kondo H., Hirono I., Aoki T., 2012. Molecular cloning and characterization of toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. Dev. Comp. Immunol. 37, 87-96.
  • Ishaq M., Hu J., Wu X., Fu Q., Yang Y., Liu Q., Guo D., 2008. Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol. Biotechnol. 39, 231-238.
  • Jabłońska A., Paradowska E., 2014. Rola receptorów RIG-I-podobnych w odpowiedzi przeciwwirusowej. Post. Hig. Med. Dosw. 68, 541-556.
  • Jankowsky E., Fairman-Williams M. E., 2010. An introduction to RNA helicases: superfamilies, families, and major themes. [W:] RNA helicases. Jankowsky E. (red.). Published Royal Society of Chemistry, 1-31.
  • Jensen S., Thomsen R., 2012. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 86, 2900-2910.
  • Kim T., Pazhoor S., Bao M., Zhang Z., Hanabuchi S., Facchinetti V., Bover L., Plumas J., Chaperot L., Qin J., Liu Y. J., 2010. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc. Natl. Acad. Sci. USA 107, 15181-15186.
  • Langevin C., Aleksejeva E., Passoni G., Palha N., Levraud J. P., Boudinot P., 2013. The antiviral innate immune response in fish: evolution and conservation of the IFN system. J. Mol. Biol.425, 4904-4920.
  • Lee Y. S., Nakahara K., Pham J. W., Kim K., He Z., Sontheimer E. J., Carthew R. W., 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 117, 69-81.
  • Lemaire P. A., Anderson E., Lary J., Cole J. L., 2008. Mechanism of PKR activation by dsRNA. J. Mol. Biol. 381, 351-360.
  • Lin K., Ge H., Lin Q., Wu J., He L., Fang Q., Zhou C., Sun M., Huang Z., 2013. Molecular characterization and functional analysis of toll-like receptor 3 gene in orange-spotted grouper (Epinephelus coioides). Gene 527, 174-182.
  • Linder P., 2006. Dead-box proteins: a family affair- active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168-4180.
  • Liu T. K., Zhang Y. B., Liu Y., Sun F., Gui J. F., 2011. Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response. J. Virol. 85, 12769-12780
  • Liu Y., Lu N., Yuan B., Weng L., Wang F., Liu Y. J., Zhang Z., 2014. The interaction between the helicase DHX33 and IPS-1 as a novel pathway to sense double-stranded RNA and RNA viruses in myeloid dendritic cells. Cell. Mol. Immunol.11, 49-57.
  • Machitani M., Sakurai F., Wakabayashi K., Tomita K., Tachibana M., Mizuguchi H., 2016. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci. Rep. 6, 27598.
  • MacKay C. R., Wang J. P., Kurt-Jones E. A., 2014. Dicer's role as an antiviral: still an enigma. Curr. Opin. Immunol. 26, 49-55.
  • Magnadottir B., 2006. Innate immunity in fish (overview). Fish Shellfish Immunol. 20, 137-151.
  • Matsuo A., Oshiumi H., Tsujita T., Mitani H., Kasai H., Yoshimizu M., Matsumoto M., Seya T., 2008. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J. Immunol. 181, 3474-3485.
  • Miyashita M., Oshiumi H., Matsumoto M., Seya T., 2011. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 31, 3802-3819.
  • Oshiumi H., Sakai K., Matsumoto M., Seya T., 2010. DEAD/H BOX3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur. J. Immunol. 40, 940-948.
  • Oshiumi H., Miyashita M., Okamoto M., Morioka Y., Okabe M., Matsumoto M., Seya T., 2015. DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation. Cell Rep. 11, 1193-1207.
  • Pak J., Fire A., 2007. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241-244.
  • Paradkar P. N., Trinidad L., Voysey R., Duchemin J. B., Walker P. J., 2012. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc. Natl. Acad. Sci. USA 109, 18915-18920.
  • Paradkar P. N., Duchemin J. B., Voysey R., Walker P. J., 2014. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl. Trop. Dis. 24, e2823.
  • Pearson A. M., 1996. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 8, 20-28.
  • Poynter S., Lisser G., Monjo A., DeWitte-Orr S., 2015. Sensors of infection: viral nucleic acid PRRs in fish. Biology 4, 460-493.
  • Qian T., Wang K., Mu Y., Ao J., Chen X., 2013. Molecular characterization and expression analysis of TLR 7 and TLR 8 homologs in large yellow croaker (Pseudosciaena crocea). Fish Shellfish Immunol. 35, 671-679.
  • Quynh N. T., Hikima J.-I., Kim Y.-R., Fagutao F. F., Kim M. S., Aoki T., Jung T. S., 2015. The cytosolic sensor, DDX41, activates antiviral and inflammatory immunity in response to stimulation with double-stranded DNA adherent cells of the olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 44, 576-583.
  • Radi M., Falchi F., Garbelli A., Samuele A., Bernardo V., Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G, Botta M., 2012. Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg. Med. Chem. Lett. 22, 2094-2098.
  • Ranji A., Boris-Lawrie K., 2010. RNA helicases. Emerging roles in viral replication and the host innate response. RNA Biol. 7, 775-787.
  • Reniewicz P., Zyzak J., Siednienko J., 2016. Komórkowe receptory egzogennego RNA. Postepy Hig. Med. Dosw. 70, 337-348.
  • Rothenburg S., Deigendesch N., Dittmar K., Koch-Nolte F., Haag F., Lowenhaupt K., Rich A., 2005. A PKR-like eukaryotic initiation factor 2α kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Natl. Acad. Sci. USA 102, 1602-1607.
  • Samanta M., Basu M., Swain B., Panda P., Jayasankar P., 2013. Molecular cloning and characterization of toll-like receptor 3, and inductive expression analysis of type I IFN, Mx and pro-inflammatory cytokines in the Indian carp, rohu (Labeo rohita). Mol. Biol. Rep., 40, 225-235.
  • Sarkies P., Miska E. A., 2013. RNAi pathways in the recognition of foreign RNA: antiviral responses and host-parasite interactions in nematodes. Biochem. Soc. Trans. 41, 876-880.
  • Schroder M., 2010. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem. Pharmacol. 79, 297-306.
  • Schroder M., Baran M., Bowie A. G., 2008. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF activation. EMBO J. 27, 2147-2157.
  • Sepulcre M. P., Alcaraz-Perez F., Lopez-Munoz A., Roca F. J., Meseguer J., Cayuela M. L., Mulero V., 2009. Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-κB activation. J. Immunol. 182, 1836-1845.
  • Skjaeveland I., Iliev D. B., Zou J., Jørgensen T., Jørgensen J. B., 2008. A TLR9 homolog that is up-regulated by IFN-γ in Atlantic salmon (Salmo salar). Dev. Comp. Immunol. 32, 603-607.
  • Soulat D., Burckstummer T., Westermayer S., Goncalves A., Bauch A., Stefanovic A., Hantschel O., Bennett K. L., Decker T., Superti-Furga G., 2008. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135-2146.
  • Su J., Su J., Shang X., Wan Q., Chen X., Rao Y., 2015. SNP detection of TLR gene, association study with susceptibility/resistance to GCRV and regulation on mRNA expression in grass carp, Ctenopharyngodon idella. Fish Shellfish Immunol. 43, 1-12.
  • Sundaram A. Y., Kiron V., Dopazo J., Fernandes J. M., 2012. Diversification of the expanded teleost-specific toll-like receptor family in Atlantic cod, Gadus morhua. BMC Evol. Biol. 12, 256.
  • Takeda K., Akira S., 2004. TLR signaling pathways. Semin Immunol. 16, 3-9.
  • Takeuchi O., Akira S., 2008. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 20, 17-22.
  • Unterholzner L., 2013. The interferon response to intracellular DNA: why so many receptors? Immunobiology 218, 1312-1321.
  • Wang W., Asim M., Yi L., Hegazy A. M., Hu X., Zhou Y., Ai T., Lin L., 2015. Abortive infection of snake head fish vesiculovirus in ZF4 cells was associated with the RLRs pathway activation by viral replicative intermediates. Int. J. Mol. Sci. 16, 6235-6250.
  • Wang X. H., Aliyari R., Li W. X., Li H. W., Kim K., Carthew R., Atkinson P., Ding S. W., 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452-454.
  • Whelan F. J., Meehan C. J., Golding G. B., Mcconkey B. J., Bowdish D. M., 2012. The evolution of the class A scavenger receptors. BMC Evol. Biol. 12, 227.
  • Wilkins C., Gale Jr. M., 2010. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22, 41-47.
  • Yeh D.-W., Liu Y.-L., Lo Y.-C., Yuh C.-H., Yu G.-Y., Lo J.-F., Luo Y., Xiang R., Chuang T.-H., 2013. Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish. PNAS 110, 20711-20716.
  • Yoneyama M., Fujita T., 2010. Recognition of viral nucleic acids in innate immunity. Rev. Med. Virol. 20, 4-22.
  • Yoneyama M., Onomoto K., Jogi M., Akaboshi T., Fujita T., 2015. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48-53.
  • Zhang Z., Kim T., Bao M., Facchinetti V., Jung S.Y., Ghaffari A. A., Qin J., Cheng G., Liu Y. J., 2011a. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34, 866-878.
  • Zhang Z., Yuan B., Lu N., Facchinetti V., Liu Y-J., 2011b. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J. Immunol. 187, 4501-4508.
  • Zhou Z.-X., Sun L., 2015. Immune effects of R848: Evidences that suggest an essential role of TLR7/8-induced, MyD88-and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). Dev. Comp. Immunol. 49, 113-120.
  • Zhou Z.-X., Zhang B.-C., Sun L., 2014. Poly (I:C) induces antiviral immune responses in Japanese flounder (Paralichthys olivaceus) that require TLR3 and MDA5 and is negatively regulated by MyD88. PLoS ONE, 9, e112918.
  • Zou J., Chang M., Nie P., Secombes C. J., 2009. Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol9, 85.
  • Zou P. F., Chang M. X., Xue N. N., Liu X. Q., Li J. H., Fu J. P., Chen S. N., Nie P., 2014. Melanoma differentiation-associated gene 5 in zebrafish provoking higher interferon-promoter activity through signalling enhancing of its shorter splicing variant. Immunology 141, 192-202.
  • Zou P. F., Chang M. X., Li Y., Zhang S. H., Fu J. P., Chen S. N., Nie P., 2015. Higher antiviral response of RIG-I through enhancing RIG-I/MAVs-mediated signaling by its long insertion variant in zebrafish. Fish Shellfish Immunol. 43, 13-24.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p609kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.