Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 575-593

Article title

Układ odpornościowy ssaków w obronie integralności organizmu

Authors

Content

Title variants

EN
Immune system of mammals in maintenance of body integrity

Languages of publication

PL EN

Abstracts

PL
Ważną funkcją układu odpornościowego ssaków jest obrona przed patogenami, której podstawą jest zdolność komórek odporności wrodzonej i nabytej do aktywacji wskutek wiązania antygenów przez receptory komórkowe. Jednak, układ odpornościowy ssaków narażony jest przede wszystkim na kontakt z antygenami własnymi, mikrobioty jelitowej, pokarmowymi czy antygenami płodu (w przypadku osobników płci żeńskiej), a antygeny organizmów patogennych stanowią w tej grupie mniejszość. W warunkach fizjologicznych odpowiedź odpornościowa wywołana jest przez antygeny patogenów, natomiast inne, "nieszkodliwe" antygeny (własne, mikrobioty, płodowe) wywołują tolerancję. W tej pracy opisano najważniejsze mechanizmy, które zapobiegają reakcji odpornościowej na antygeny własne i chronią organizm przed rozwojem chorób autoimmunizacyjnych. Przedstawiono podstawowe mechanizmy ochrony płodu przed atakiem układu odpornościowego matki. Scharakteryzowano rolę interakcji mikrobioty jelitowej z komórkami odpornościowymi w błonie śluzowej przewodu pokarmowego, której skutkiem jest tolerancja na antygeny mikrobioty i pokarmowe, przy jednoczesnym zachowaniu gotowości do obrony przed mikroorganizmami chorobotwórczymi. Zwrócono uwagę na pozytywne skutki działania limfocytów autoreaktywnych w rozwoju narządów i utrzymaniu homeostazy układu odpornościowego.
EN
An important function of the mammalian immune system is the defense against pathogens, which is based on the ability of innate and adaptive immune cells to undergo activation by binding antigens by cell receptors. However, the mammalian immune system is primarily exposed to self antigens, intestinal mibrobiota, food, or fetal antigens (in the case of females), and the antigens of pathogenic organisms constitute a minority in this group. Under normal physiological conditions, the immune response is triggered by pathogen antigens, while other "harmless" antigens (self, microbiota, fetus) induce tolerance. This work describes the most important mechanisms that prevent the immune response to self antigens and protect against autoimmune diseases. Basic mechanisms of fetal protection against the attack of the mother’s immune system are presented. The role of intestinal microbiota interactions with immune cells in the gastrointestinal mucosa is characterized, which results in tolerance to microbiota and food antigens while maintaining the ability to defend against pathogenic microorganisms. Some positive effects of the autoreactivity of lymphocytes on organ development and homeostasis maintenance are emphasized.

Journal

Year

Volume

66

Issue

4

Pages

575-593

Physical description

Dates

published
2017

Contributors

  • Zakład Immunologii, Instytut Zoologii, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland

References

  • Abbas A. R., Baldwin D., Ma Y., Ouyang W., Gurney A., Martin F., Fong S., van Lookeren Campagne M., Godowski P., Williams P. M., Chan A. C., Clark H. F., 2005. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immunol. 6, 319-331.
  • Aliberti J., 2016. Immunity and tolerance induced by intestinal mucosal dendritic cells. Mediators Inflamm. doi.org/10.1155/2016/3104727.
  • Aluvihare V. R., Kallikourdis M., Betz A. C., 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266-271.
  • Anaya J.-M., 2012. Common mechanisms of autoimmune diseases (the autoimmune tautology). Autoimm. Rev. 11, 781-784.
  • Aspelund A., Antila S., Proulx S. T., Karlsen T. V., Karaman S., Detmar M., Wiig H., Alitalo K. A., 2015. Dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991-999.
  • Bain C. C., Mowat A., 2011. Diversity, location and function. Intestinal macrophages - specialized adaptation to a unique environment. Eur. J. Immunol. 41, 2470-2525.
  • Bain C. C., Mowat A., 2014. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102-117.
  • Bauer M. E.., Moriguchi Jeckel C. M., Luz C., 2009. The role of stress factors during aging of the immune system. Ann. NY Acad. Sci. 1153, 139-152.
  • Benoist C., Mathis D., 2012. Treg cells, life history, and diversity. Cold Spring Harb. Perspect. Biol. 4, a007021.
  • Bocian K., Kiernozek E., Domagała-Kulawik J., Korczak-Kowalska G., Stelmaszczyk-Emmel A., Drela N., 2017. Expanding diversity and common goal of regulatory T and B cells. I: Origin, phenotype, mechanisms. Arch. Immunol. Ther. Exp. doi 10.1007/s00005-017-0469-3.
  • Bolon B., 2012. Cellular and molecular mechanisms of autoimmune disease. Tox. Pathol. 40, 216-229.
  • Bonila F. A., Oettgen H. C., 2010. Adaptive immunity. J. Allergy Clin. Immunol. 125, S33-40.
  • Boryczka K., Kuna P., Pietruczuk M., 2012. Limfocyty regulatorowe w tolerancji immunologicznej. Diag. Lab. 48, 71-76.
  • Brown E. M., Arrieta M.-C., Finlay B. B., 2013. A fresh look at the hygiene hypothesis: How intestinal microbiota exposures drives immune effector responses in atopic disease. Sem. Immunol. 25, 378-387.
  • Burnet F. M., 1957. A modification of Jerne's theory of antibody production using the concept of clonal selection. Austr. J. Sci. 20, 67-69.
  • Chaplin D. D., 2010. Overwiew of the immune response. J. Allergy Clin. Immunol. 125, S3-S23.
  • Charles J. F., Nakamura J. C., 2014. Bone and the inna te immune system. Curr. Osteoporos. Rep. 12, 1-8.
  • Chazaud B., 2014. Macrophages: Supportive cells for tissue repair and regeneration. Immunobiology 219, 172-178.
  • Chelvarajan R. L., Liu Y., Popa D., Getchell M. L., Getchell T. V., Stromberg A. J., Bondada S., 2006. Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J. Leukoc. Biol. 79, 1314-1327.
  • Chung J. B., Silverman M., Monroe J. G., 2003. Transitional B cells: step by step towards immune competence. Trends Immunol. 24, 342-348.
  • den Haan J. M. M., Arens R., van Zelm M. C., 2014. The activation of the adaptive immune system: Corss-talk between antigen-presenting cells, T cells and B cells. Immunol. Lett. 162, 103-112.
  • Derbinski J., Schulte A., Kyewski B., Klein L., 2001. Promiscous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032-1039.
  • Di Comite G., Sabbadini M. G., Corti A., Rovere-Querini P., Manfredi A. A., 2007. Conversation galante: How the immune and the neuroendocrine systems talk each to other. Autoimm. Rev. 7, 23-29.
  • Drela N., 2012. Nagroda Nobla 2011: Dwa rodzaje odporności. Kosmos 61, 535-546.
  • Drela N., 2014. Immunologiczna teoria starzenia. Post. Bioch. 60, 221-232.
  • Elenkov I. J., 2008. Neurohormonal-cytokine interactions: Implications for inflammation, common human diseases and well-being. Neurochem. Int. 52, 40-51.
  • Franceschi C., Campisi J., 2014. Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4-S9.
  • Furman D., 2014. Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men. Exp. Rev. Vacc. 14, 461-471.
  • Gordon S., Pluddemann A., 2017. Tissue macrophages: heterogeneity and functions. BMC Biology 15, doi: 10.1186/s12915-017-0392-4.
  • Goronzy J. J., Weyand C., 2013. Understanding immune senescence to improve vaccine responses. Nat. Immunol. 14, 428-436.
  • Gregorczy-Maślanka K., Kurzawa R., 2016. Mikrobiota organizmu ludzkiego i jej wpływ na homeostaze immunologiczną-część I. Alergia Astma Immunologia 21, 146-150.
  • Gui J., Mustachio L. M., Su D.-M., Craig R. W., 2012. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progrnitors and stroma. Aging Dis. 3, 280-290.
  • Gururajan M., Sindhava V. J., Bondala S. B., 2014. B cell tolerance in health and disease. Antibodies 3, 116-129.
  • Hogquist A. K., Baldwin T. A., Jameson S. C., 2005. Central tolerance: learning self-control in the thymus. Nature 5, 772-781.
  • Hornef M., 2015. Pathogens, commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR J. 56, 159-162.
  • Hunt J. S., Langat D. L., 2009. HLA-G: a human pregnancy-related immunomodulator. Curr. Op. Pharmacol. 9, 462-469.
  • Jaeger B. N., Vivier E., 2012. Natural killer cell tolerance: control by self or self-tolerance? Cold Spring Harb. Perspect. Biol. 4, a007229, doi: 10.1101/cshperspect.a007229.
  • Jańczewska I., Domżalska-Popadiuk I., 2014. Znaczenie kolonizacji bakteryjnej przewodu pokarmowego noworodków donoszonych urodzonych droga cięcia cesarskiego. Ann. Acad. Med. Gedan. 44, 99-104.
  • Kuśmierska A., Fol M., 2014. Właściwości immunomodulacyjne i terapeutyczne drobnoustrojów probiotycznych. Probl. Hig. Epidemiol. 95, 529-540.
  • Lange T., Dimitrov S., Born J., 2010. Effects of sleep and circadian rhythms on the human immune system. Ann. NY Acad. Sci. 1193, 48-59.
  • Larbi A., Franceschi C., Mazzatti D., Solana R., Wikby A., Pawelec G., 2008. Aging and the immune system as a prognostic factor for human longevity. Physiology 23, 64-74.
  • La Sala A., Pontecorvo L., Agresta A., Rosano G., Stabile E., 2012. Regulation of collateral blond Lessel development by the innate and adaptive immune system. Trends Mol. Med. 18, 494-501.
  • Le Bouteiller P., Piccinni M. P., 2008. Human NK cells in pregnant uterus: why there? Am. J. Reprod. Immunol. 59, 401-406.
  • Lederberg J., 1959. Genes and antibodies. Science 129, 1649-1653.
  • Lio C. W., Hsieh C. S., 2008. A two-step process for thymic regulatory T cell development. Immunity 28, 100-111.
  • Liu Y. J., 2006. A unified theory of central tolerance in the thymus. Trends Immunol. 227, 215-221.
  • Louveau A., Smirnov I., Keyes T. J., Eccles J. D., Rouhani S. J., Peske J. D., Derecki N. C., Castle D., Mandell J. W., Lee K. S., Harris T. H., Kipnis J., 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341.
  • Makrigiannakis A., Minas V., Kalantaridou S. N., Nikas G., Chrousos G. P., 2006. Hormonal and cytokine regulation of early implantation. Trends Endocrinol. Metab. 17, 178-185.
  • Makrigianniakis A., Karamouti M., Drakakis P., Loutradis D., Antsaklis A., 2008. Fetomaternal immunotolerance, Am. J. Reprod. Immunol. 60, 482-496.
  • Metzger T. C., Anderson M. S., 2011. Control of central and peripheral tolerance by Aire. Immunol. Rev. 241, 89-103.
  • Mogensen T. H., 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240-273.
  • Montecino-Rodriguez E., Dorshkind K., 2012. B-1 B cell development in the fetus and adult. Immunity 36, 13-23.
  • Mor G., Cardenas I., 2010. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. 63, 425-433.
  • Mor G., Cardenas I., Abrahams V., Guller S., 2011. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. NY Acad. Sci. 1221, 80-87.
  • Mori G., D'Amelio P., Faccio R., Brunetti G., 2013. The interplay between the bone and the immune system. Clin. Dev. Immunol. doi.org/10.1155/2013/720504.
  • Nguyen P. V., Kafka J. K., Ferreira V. H., Roth K., Kaushic C., 2014. Innate and adaptive immune responses in male and female reproductive tracts in homeostasis and following HIV infection. Cell. Mol. Immunol. 11, 410-427.
  • Noverr M. C., Huffnagle G. B. 2005. The 'microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35, 1511-1520.
  • Okumura R., Takeda K., 2016. Maintenance of gut homeostasis by the mucosal immune system. Proc. Japn. Acad. Ser. B 92, 423-435.
  • Okumura R., Takeda K., 2017. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 49, doi:10.1038/emm.2017.20
  • Olszewska J., Jagusztyn-Krynicka E. K., 2012. Human Microbiome Project-mikroflora jelit oraz jej wpływ na fizjologię i zdrowie człowieka. Post. Mikrobiol. 51, 243-256.
  • Owen R. D., 1945. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400-401.
  • Pabst O., Mowat A. M., 2012. Oral tolerance to food protein. Mucosal Immunol. 5, 232-239.
  • Parkin J., Cohen B., 2001, An overwiew of the immune system. Lancet 357, 1777-1789.
  • Pelanda R., Torres R. M., 2012. Central B-cell tolerance: where selection begins. Cold Sring Harb. Perspect. Biol. 4, doi: 10.1101/cshperspect.a007146.
  • Pieper K., Grimbacher B., Eibel H., 2013. B-cell biology and development. J. Allergy Clin. Immunol. 131, 959-971.
  • Sakaguchi S., Yamaguchi T., Nomura T., Ono M., 2008. Regulatory T cells and immune tolerance. Cell 133, 775-787.
  • Scherjon S., Lashley L., van der Hoorn M.-L., Claas F., 2011. Fetus specific T cell modulation Turing fertilization, implantation and pregnancy. Placenta 32, S291-S297.
  • Schwartz M., Shechter R., 2010. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol. Psychiatry 15, 342-354.
  • Schwartz M., Ziv Y., 2008. Immunity to self and self maintenance: a unified theory of brain pathologies. Trends Immunol. 29, 211-219.
  • Shevach E. M., 2009. Mechanisms of foxp3+ tregulatory cell mediated suppression. Immunity 30, 636-645.
  • Simon A. K., Hollander G. A., McMichael A., 2015. Evolution of the immune system in human from infancy to old age. Proc. R. Soc. B 282, 20143085.
  • Solana R., Tarazona R., Gayoso I., Lesur O., Dupuis G., Fulop T., 2012. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Sem. Immunol. 24, 331-341.
  • Strachan D. P. 1989. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259-1260.
  • Straub R. H., Cutolo M., Zietz B., Scholmerich J., 2001. The process of aging changes the interplay of the immune, endocrine and nervous systems. Mech. Ageing Dev. 122, 1591-1611.
  • Surh C. D., Sprent J., 2008. Homeostasis of naïve and memory T cells. Immunity 29, 848-862.
  • The Human Microbiome Project Consortium. 2013. Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214.
  • Thyagarajan S., Priyanka H. P., 2012. Bidirectional communications between the neuroendocrine system and the immune system: relevance to health and diseases. Ann. Neurosci. 19, 40-46.
  • Tidball J. G., 2017. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 17, 165-178.
  • Tobon J. G., Izquierdo J. H., Canas C. A. B., 2013. B lymphocytes: development, tolerance and their role in autoimmunity - focus on Systemic Lupus Erythematosus. Autoimm. Dis. doi.org/10.1155/2013/827254.
  • Tsai F., Coyle W. J., 2009. The microbiome and obesity: is obesity linked to our gut flora? Curr. Gastroenterol. Rep. 11, 307-313.
  • Van den Elsen L. W. J., Poyntz H. C., Weyrich L. S., Young W., Forbes-Blom E. E., 2017. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clin. Transl. Immunol. 6, e125; doi:10.1038/cti.2016.91.
  • Walton J. C., Weil Z. M., Nelson R. J., 2011. Influence of photoperiod on hormones, behavior, and immune function. Front. Neuroendocrinol. 32, 303-319.
  • Xing Y., Hogquist K. A., 2012. T-cell tolerance: central and peripheral. Cold Spring Harb. Perspect. Biol. 4, doi: 10.1101/cshperspect.a006957.
  • Yamada A., Ushio A., Arakaki R., Tsunematsu T., Kudo Y., Hayashi Y., Ishimaru N., 2015. Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. Am. J. Pathol. 185, 2886-2897.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p575kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.