Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 553-562

Article title

Receptory związane z białkami G w odporności wrodzonej bezkręgowców

Content

Title variants

EN
G-protein-coupled receptors in invertebrate innate immunity

Languages of publication

PL EN

Abstracts

PL
Receptory związane z białkami G (GPCRs) stanowią najliczniejszą i bardzo zróżnicowaną grupę receptorów błonowych odpowiedzialnych za przekazywanie sygnałów ze środowiska zewnętrznego do wnętrza komórki. GPCRs uczestniczą niemal w każdym aspekcie życia organizmów, regulując m. in. mechanizmy związane z odpowiedzią immunologiczną, zarówno u kręgowców, jak i bezkręgowców. W pracy opisano ogólną budowę i klasyfikację GPCRs, mechanizmy aktywacji i przekazywania sygnału przez te receptory oraz sposoby regulacji ich aktywności. Ponadto zamieszczono podstawowe informacje na temat mechanizmów rozpoznawania patogenów przez bezkręgowce. W zasadniczej części pracy zaprezentowano wyniki najnowszych badań dotyczące zaangażowania GPCRs w reakcje obronne bezkręgowców, na przykładzie wybranych organizmów modelowych, tj. skrzypłocza atlantyckiego (Limulus polyphemus), muszki owocowej (Drosophila melanogaster) oraz nicienia (Caenorhabditis elegans).
EN
The G-protein-coupled receptors (GPCRs) form the largest and most diverse group of membrane receptors engaged in extracellular signals transduction. GPCRs are involved in almost all aspects of vertebrates and invertebrates' life, including regulation of the immune response mechanisms. The paper describes the general structure and classification of GPCRs. Moreover, it presents the mechanisms of GPCR activation and signal transduction as well as the regulation of GPCR activity. Furthermore, basic information about the mechanisms of pathogen recognition by invertebrates is included. The main part of this review shows the most recent data about the involvement of GPCRs in defense mechanisms of invertebrates such as the horseshoe crab (Limulus polyphemus), fruit fly (Drosophila melanogaster), and nematode (Caenorhabditis elegans).

Journal

Year

Volume

66

Issue

4

Pages

553-562

Physical description

Dates

published
2017

Contributors

  • Zakład Immunobiologii, Instytut Biologii i Biochemii, Wydział Biologii i Biotechnologii UMCS, Akademicka 19, 20-033 Lublin, Polska
  • Department of Immunobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
  • Zakład Wirusologii i Immunologii, Instytut Mikrobiologii i Biotechnologii, Wydział Biologii i Biotechnologii UMCS, Akademicka 19, 20-033 Lublin, Polska
  • Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
  • Zakład Wirusologii i Immunologii, Instytut Mikrobiologii i Biotechnologii, Wydział Biologii i Biotechnologii UMCS, Akademicka 19, 20-033 Lublin, Polska
  • Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland

References

  • Altincicek B., Vilcinskas A., 2006. Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella. Dev. Comp. Immunol. 30, 1108-1118.
  • Altincicek B., Linder M., Linder D., Preissner K. T., Vilcinskas A., 2007. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect. Immun. 75, 175-183.
  • Ariki S., Koori K., Osaki T., Motoyama K., Inamori K., Kawabata S., 2004. A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proc. Natl. Acad. Sci. USA 27, 953-958.
  • Bargmann C. I., 2006. Chemosensation in C. elegans. [W]: The Online Review of C. elegans. Biology WormBook.
  • Befus A. D., Mowat C., Gilchrist M., Hu J., Solomon S., Bateman A., 1999. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 15, 947-953.
  • Brandt J. P., Ringstad N., 2015. Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr. Biol. 25, 2228-2237.
  • Brust T. F., Conley J. M., Watts V. J., 2015. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur. J. Pharmacol. 763(Pt B), 223-232.
  • Carillo M. A., Guillermin M. L., Rengarajan S., Okubo R. P., Hallem E. A., 2013. O2-sensing neurons control CO2 response in C. elegans. J. Neurosci. 33, 9675-9682.
  • Ewbank J. J., Pujol N., 2016. Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr. Opin. Immunol. 38, 1-7.
  • Ferguson S. S., 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.
  • Fredriksson R., Lagerström M. C., Lundin L. G., Schiöth H. B., 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1256.
  • Fredriksson R., Schiöth H. B., 2005. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414-1425.
  • Griesch J., Wedde M., Vilcinskas A., 2000. Recognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella: a new pathway mediating induction of humoral immune responses. Insect Biochem. Mol. Biol. 30, 461-472.
  • Hanlon C. D., Andrew D. J., 2015. Outside-in signaling--a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J. Cell Sci. 128, 3533-3542.
  • Kawli T., He F., Tan M. W., 2010. It takes nerves to fight infections: insights on neuroimmune interactions from C. elegans. Dis Model. Mech. 3, 721-731.
  • Kim D. H., Ewbank J. J., 2015. Signaling in the innate immune response. [W]: The C. elegans Research Community. WORMBook, 1-51.
  • Kim S. H., Lee W. J., 2014. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front. Cell. Infect. Microbiol. 10, 116.
  • Kolakowski L. F. Jr., 1994. GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1-7.
  • Krautz R., Arefin B., Theopold U., 2014. Damage signals in the insect immune response. Front. Plant Sci. 11, 342.
  • Kurata S., Ariki S., Kawabata S., 2006. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 211, 237-249.
  • Lee K. A., Kim B., Bhin J., Kim D. H., You H., Kim E. K., Kim S. H., Ryu J. H., Hwang D., Lee W. J., 2015. Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe. 11, 191-204.
  • Lefkowitz R. J., 2013. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 52, 6366-6378.
  • Li Q., Liberles S. D., 2015. Aversion and attraction through olfaction. Curr. Biol. 25, 120-129.
  • Lin H. H., 2013. G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry. Biomed. J. 36, 118-124.
  • Matzinger P., 2002. The danger model: a renewed sense of self. Science 12, 301-305.
  • Meisel J. D., Panda O., Mahanti P., Schroeder F. C., Kim D. H., 2014. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 159, 267-280.
  • Osaki T., Kawabata S., 2004. Structure and function of coagulogen, a clottable protein in horseshoe crabs. Cell. Mol. Life Sci. 61, 1257-1265.
  • Ozaki A., Ariki S., Kawabata S., 2005. An antimicrobial peptide tachyplesin acts as a secondary secretagogue and amplifies lipopolysaccharide-induced hemocyte exocytosis. FEBS J. 272, 3863-3871.
  • Powell J. R., Kim D. H., Ausubel F. M., 2009. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc. Natl. Acad. Sci. USA 106, 2782-2787.
  • Prabhu Y., Eichinger L., 2006. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell Biol. 85, 937-946.
  • Pradel E., Zhang Y. Pujol N., Matsuuyama T., Bargmann C. I., Ewbank J. J., 2007. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 2295-2300.
  • Reboul J., Ewbank J. J., 2016. GPCRs in invertebrate innate immunity. Biochem. Pharmacol. 15, 82-87.
  • Shpacovitch V., Feld M., Bunnett N. W., Steinhoff M., 2007. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol. 28, 541-550.
  • Shtonda B. B., Avery I., 2006. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89-102.
  • Valanne S., Myllymäki H., Kallio J., Schmid M. R., Kleino A., Murumägi A., Airaksinen L., Kotipelto T., Kaustio M., Ulvila J., Esfahani S. S., Engström Y., Silvennoinen O., Hultmark D., Parikka M., Rämet M., 2010. Genome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling. J. Immunol. 184, 6188-6198.
  • Valanne S., Wang J. H., Rämet M., 2011. The Drosophila Toll signaling pathway. J. Immunol. 15, 649-656.
  • Vögler O., Barceló J. M., Ribas C., Escribá P. V., 2008. Membrane interactions of G proteins and other related proteins. Biochim. Biophys. Acta 1778, 1640-1652.
  • Wettschureck N., Offermanns S., 2005. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159-1204.
  • Zhang D., Zhao Q., Wu B., 2015. Structural studies of G protein-coupled receptors. Mol. Cells 38, 836-842.
  • Ziegler K., Kurz C.L., Cypowyj S., Couillault C., Pophillat M., Pujol N., Ewbank J. J., 2009. Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade. Cell Host Microbe 5, 341-352.
  • Zugasti O., Bose N., Squiban B., Belougne J., Kurz C. L., Schroeder F. C., Pujol N., Ewbank J. J., 2014. Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat. Immunol. 15, 833-838.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p553kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.