Preferences help
enabled [disable] Abstract
Number of results
2017 | 66 | 4 | 541-551
Article title

Układ odpornościowy owadów w obronie integralności organizmu

Title variants
Insect immune system in defense of organism integrity
Languages of publication
Owady zasiedlają wszystkie lądowe nisze ekologiczne. Ewolucyjny sukces osiągnęły między innymi dzięki sprawnie funkcjonującym mechanizmom obronnym. Układ odpornościowy tej gromady zwierząt oparty jest jedynie na mechanizmach wrodzonych. Składa się on z humoralnych i komórkowych odczynów, które uzupełniają się nawzajem w walce z infekcją. W pracy zwięźle przedstawiono aktualny stan wiedzy, dotyczący układu odpornościowego owadów i zwrócono uwagę na jego rolę w utrzymaniu homeostazy organizmu. Ponadto, na przykładzie barciaka większego Galleria mellonella omówiono modulację odpowiedzi immunologicznej przez zmiany temperatury otoczenia. Przedstawiono także aktualne informacje dotyczące zjawiska piętnowania immunologicznego owadów, ze szczególnym uwzględnieniem barciaka większego.
Insects populate all ecological land niches. Their evolutionary successes have been achieved thanks to well-functioning defense mechanisms. The immune system of this group of animals is based only on innate immunity mechanisms. It consists of humoral and cellular reactions that complement each other in the fight against infection. The paper briefly summarizes the state of the art of insect immune system and highlights its role in maintaining homeostasis of the organism. In addition, the modulation of immune response by changes in ambient temperature is described taking an example of a greater wax moth Galleria mellonella. Additionally, the current information concerning priming of insect immune system is presented with special emphasis on the greater wax moth.
Physical description
  • Bergin D., Murphy L., Keenan J., Clynes M., Kavanagh K., 2006. Pre-expoure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microb. Infect. 8, 2105-2112.
  • Bombelli P.,Howe C. J., Bertocchini F., 2017. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27, R292-R293.
  • Brown S. E., Howard A., Kasprzak A. B., Gordon K. H., East P. D., 2009. A peptidomic study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem. Mol. Biol. 39, 792-800.
  • Browne N., Surlis C., Kavanagh K., 2014. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae. J. Insect Physiol. 63, 21-26.
  • Buczek J., Deptuła W., Gliński Z., Jarosz J. Stosik M., Wernicki A., 2000. Immunologia porównawcza i rozwojowa zwierząt. Wydawnictwo Naukowe PWN, Warszawa
  • Chambers M. C., Schneider D. S., 2012. Pioneering immunology: insect style. Curr. Opin. Immunol. 24, 10-14.
  • Champion O. L., Wagley S., Titball R. W. 2016. Galleria mellonella as a model host for microbiologican and toxicological research. Virulence 7, 840-845.
  • Contreras-Garduño J., Lanz-Mendoza H., Franco B., Nava A., Pedraza-Reyes M., Canales-Lazcano J., 2016. Insect immune priming: ecology and experimental evidences. Ecol. Entomol. 41, 351-366.
  • Cooper D., Eleftherianos I., 2017. Memory and specificity in the insect immune system: Current perspectives and future challenges. Front. Immunol. 8, e539.
  • Cytryńska M., Wojda I., Jakubowicz T., 2016. How insects combat infections. [W:] Lessons in immunity: from single-cell organisms to mammals. Ballarin L., Cammarata M. (red.). Academic Press/Elsevier, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, 117-128.
  • De Gregorio E., Spellman P. T., Tzou P., Rubin G. M., Lemaitre B., 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568-2579.
  • Dubovskiy I. M., Whitten M. M., Kryukov V. Y., Yaroslavtseva O. N., Grizanova E. V., Greig C., Mukherjee K., Vilcinskas A., Mitkovets P. V., Glupov V. V., Butt T. N., 2013a. More than a colour change: insect melanism, disease resistance and fecundity. Proc. Biol. Sci. 280, e20130584.
  • Dubovskiy I. M., Whitten M. M., Yaroslavtseva O. N., Greig C., Kryukov V. Y., Grizanova E. V., Mukherjee K.,Vilcinskas A., Glupov V. V., Butt T. M., 2013b. Can insects develop resistance to pathogenic fungi. PLoS One 8, e60248.
  • Fallon J., Troy N., Kavanagh K., 2011. Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2, 413-421.
  • Faulhaber L., Karp R., 1992. A diphasic immune response against bacteria in the american cockroach. Immunology 75, 378-381.
  • Freitak D., Schmidtberg H., Dickel F., Lochnit G., Vogel H., Vilcinskas A., 2014. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5, 547-554.
  • Garly M., Martins C., Balé C., Baldé M., Hedegaard K., Gustafson P. i współaut., 2003. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. Vaccine 21, 2782-2790.
  • Haine E. R., Rolff J., Sive-Jothy M. T. 2007. Functional consequences of blood clothing in insects. Dev. Comp. Immunol. 31, 456-564.
  • Kanost M. R., Gorman M. J., 2008. Phenoloxidases in insect immunity. [W:] Insect immunology. Beckage N. E. (red.). Elsevier, Amsterdam, 69-96.
  • Kurtz J., 2005. Specific memory within innate immune systems. Trends Immunol. 26, 186-192.
  • Kurtz J., Armitage S., 2017. Dissecting the dynamics of trans-generational immune priming. Mol. Ecol. 26, 3857-3859.
  • Kwadha C. A., Ong'amo G. O., Ndegwa P. N., Raina S. K., Fombong A. T., 2017. The biology and the control of the greater wax moth Galleria mellonella. Insects 8, doi: 10.3390/insects8020061.
  • Lavine M. D., Strand M. R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309.
  • Li D., Scherfer C., Korayem A. M., Zhao Z., Schmidt O., Theopold U., 2002. Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem. Mol. Biol. 32, 919-928.
  • Little T., Kraaijeveld A., 2004. Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol. Evol. 19, 58-60.
  • Milutinović B., Kurtz J., 2016. Immune memory in invertebrates. Seminars Immunol. 28, 328-342.
  • Moret Y., Siva-Jothy M., 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc. Royal Soc. B, Biol. Sci. 270, 2475-2480.
  • Moussian B., 2010. Recent advances in understanding mechanisms of insect cuticle differentiation.Insect Biochem. Mol. Biol. 40, 363-75.
  • Mowlds P., Kavanagh K., 2008. Effect of pre-incubation temperature on susceptibility of Galleria mellonella to infection by Candida albicans. Mycopathologia 165, 5-12.
  • Netea M., Quintin J., Van Der Meer J., 2011. Trained immunity: a memory for innate host defence. Cell Host Microbe 9, 355-361.
  • Pham L., Dionne M., Shirasu-Hiza M., Schneider D., 2007. A Specific primed immune response in Drosophila is dependent on phagocytes. Plos Pathogens 3, e26.
  • Ramarao N., Nielsen-LeRoux C., Lereclus D., 2012. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J. Visual. Exp. 70, e4392.
  • Royet J., 2004. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063-1075.
  • Sadd B., Schmid-Hempel P., 2006. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol. 16, 1206-1210.
  • Schmolz E., Lamprecht I., 2004. Thermal investigations on social insects. [W:] The nature of biological systems as revealed by thermal methods. Lörinczy D. (red.). Kluwer Academic Publishers, New York-Boston-Dordrecht-London-Moscow, s. 250-283.
  • Schmolz E., Schulz O., 1995. Calorimetric investigations on thermoregulation and growth of wax moth larvae Galleria mellonella. Thermochim. Acta 251, 241-245.
  • Stokes B. A.,Yadav S., Shokal U., Smith L. C., Eleftherianos I., 2015. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front. Microbiol. 6, 1-9.
  • Taszłow P., Wojda I., 2015. Changes in the hemolymph protein profiles in Galleria mellonella infected with Bacillus thuringiensis involve apolipophorin III. The effect of heat shock. Arch. Insect Biochem. Physiol. 88, 123-143.
  • Taszłow P., Vertyporokh L., Wojda I., 2017. Humoral immune response after repeated infection with Bacillus thuringiensis. J. Inverteb. Pathol. 149, 87-96.
  • Theopold U., Li D., Fabbri M., Scherfer C., Schmidt O., 2002. The coagulation of insect hemolymph. Cell. Mol. Life Sci. 59, 363-372.
  • Van Der Meer J., Joosten L., Riksen N., Netea M., 2015. Trained immunity: A smart way to enhance innate immune defence. Mol. Immunol. 68, 40-44.
  • Vertyporokh L., Taszłow P., Samorek-Pieróg M., Wojda I. 2015. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana. J. Invert. Pathol. 130, 42-51.
  • Vilmos P., Kurucz E., 1998. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 59-66.
  • Vogel H., Altincicek B., Glockner G., Vilcinskas A., 2011. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12, 308.
  • Werner T., Liu G., Kang D., Ekengren S., Steinerh H., Hultmark D., 2000. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 13772-13777.
  • Wojda I., 2010. Szok termiczny a podatność organizmów na zakażenie i stress osmotyczny, Post. Biochem. 56, 83-94.
  • Wojda I., 2017a. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 24, 342-357.
  • Wojda I., 2017b. Temperature stress and insect immunity. J. Therm. Biol. 68, 96-103.
  • Wojda I., Jakubowicz T., 2007. Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. J. Insect Physiol. 53, 1134-1144.
  • Wojda I., Taszłow P., 2013. Heat shock affects host-pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. J. Insect Physiol. 59, 894-905.
  • Wojda I., Kowalski P., Jakubowicz T., 2004.JNK MAP kinase is involved in the humoral immune response of the greater wax moth larvae Galleria mellonella. Arch. Insect Biochem. Physiol. 56, 143-154.
  • Wojda I., Kowalski P., Jakubowicz T., 2009. Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J. Insect Physiol. 55, 525-531.
  • Wu G., Zhao Z., Liu C., Qiu L., 2014. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. J. Econ. Entomol. 107, 559-569.
  • Wu G., Yi Y., Lv Y., Li M., Wang J., Qiu L., 2015a. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. J. Invert. Pathol. 127, 63-72.
  • Wu G., Yi Y., Sun J., Li M., Qui L., 2015b. No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Vaccine 33, 6307-6313.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.