PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 3 | 465-474
Article title

Ekspansja pikoplanktonowych sinic w ekosystemach wodnych

Content
Title variants
EN
Expansion of picocyanobacteria in aquatic ecosystems
Languages of publication
PL EN
Abstracts
PL
Sinice pikoplanktonowe stanowią podstawowy element ekosystemów wodnych, występując zarówno w zbiornikach słodkich, brakicznych, jak i otwartych wodach oceanicznych. Pełnią one kluczową rolę w produkcji pierwotnej, a ich największy udział notuje się w wodach oligotroficznych. Jednak dotychczasowe informacje na temat tych organizmów wciąż pozostają niewystarczające. W ostatnich latach wzrosła liczba doniesień dotyczących masowych zakwitów sinic pikoplanktonowych, ich potencjalnej toksyczności, a także szkodliwego wpływu na całe ekosystemy wodne. Dokładne poznanie mechanizmów odpowiedzialnych za ekspansję tych wodnych fotoautotrofów jest niezwykle ważne dla lepszego zrozumienia funkcjonowania środowiska morskiego. W pracy podsumowano dotychczasowy stan wiedzy na temat sinic pikoplanktonowych oraz przybliżono najnowsze informacje potwierdzające ich zdolność do tworzenia masowych zakwitów w wielu ekosystemach wodnych.
EN
Picocyanobacteria are common in freshwater, brackish and marine ecosystems throughout the world. They play an essential role in primary production and their domination in phytoplankton biomass is common particularly in oligotrophic waters. However, this group of photoautotrophic organisms still remains insufficiently investigated. The number of works on the occurrence of massive blooms of picocyanobacteria, their role in aquatic habitats and potential toxicity has notably increased in last years. Filling existing gaps in the knowledge of mechanisms responsible for the global expansion of these organisms can provide a better understanding of functioning of the aquatic environments. In this review, we summarized the most recent information concerning picocyanobacteria and the occurrence of their massive blooms in many aquatic ecosystems.
Journal
Year
Volume
66
Issue
3
Pages
465-474
Physical description
Dates
published
2017
Contributors
  • Pracownia Ekofizjologii Roślin Morskich, Instytut Oceanografii, Uniwersytet Gdański, Al. M. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, Universyty of Gdanski, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Pracownia Ekofizjologii Roślin Morskich, Instytut Oceanografii, Uniwersytet Gdański, Al. M. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, Universyty of Gdanski, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Pracownia Ekofizjologii Roślin Morskich, Instytut Oceanografii, Uniwersytet Gdański, Al. M. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, Universyty of Gdanski, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
References
  • Antia N. J., Cheng J. Y., 1970. The survival of axenic cultures of marine planktonic algae from prolonged exposure to darkness at 20°C. Phycologia 9, 179-183.
  • Ahlgren N. A., Rocap G., 2012. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 3, 213.
  • Bailey-Watts A. E., Bindloss M. E., Belcher J. H., 1968. Freshwater primary production by a blue-green alga of bacterial size. Nature 220, 1344-1345.
  • Beardall J., 2008. Blooms of Synechococcus: An analysis of the problem worldwide and possible causative factors in relation to nuisance blooms in the Gippsland Lakes. Monash University, 1-8.
  • Bec B., Husseini-Ratrema J., Collos Y., Souchu P. Vaquet A., 2005., Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. J. Plankton Res. 27, 881-894.
  • Bláha L., Maršálek B., 1999. Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol. Stud. 92, 95-108.
  • Callieri C., 2010. Single cells and microcolonies of freshwater picocyanobacteria: A common ecology. J. Limnol. 69, 257-277.
  • Callieri C., Stockner J. G., 2002. Freshwater autotrophic picoplankton: a review. J. Limnol. 61, 1-14.
  • Callieri C., Cronberg G., Stockner J. G., 2012. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. [W:] Ecology of Cyanobacteria II. Whitton B. A. (red.). Springer Netherlands, 229-269.
  • Chisholm S. W., Olson R. J., Zettler E. R., Goericke R., Waterbury J. B., Welschmeyer, N. A., 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340-343.
  • Cox P. A., Banack S. A., Murch S. J., 2003. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 100, 13380-13383.
  • Drews G., Prauser H., Uhlmann D., 1961. Massenvorkommen von Synechococcus plancticus nov. spec., einer solitären, planktischcn Cyanophycce, in einem Abwasserteich. Beitrag zur Kenntnis der sogenannten 'μ-Algen'. Archiv Fur Mikrobiol. 39, 101-115.
  • Fahnenstiel G.L., Sicko-Goad L., Scavia D., Stoermer E.F., 1986. Importance of picoplankton in lake Superior. Canad. J. Fisheries Aquat. Sci. 43, 55-71.
  • Flombaum P., Gallegos J. L., Gordillo R. A., Rincon J., Zabala L. L., Jiao N., Karl D. M., Li W. K., Lomas M. W., Veneziano D., 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 110, 9824-9829.
  • Frazão B., Martins R., Vasconcelos V., 2010. Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous north atlantic marine cyanobacteria? Marine Drugs 8, 1908-1919.
  • Guillard R. R. L., Murphy L. S., Foss P., Liaaen-Jensen S., 1985. Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North Atlantic. Limnol Oceanogr. 30, 412-414.
  • Hamilton T. J., Paz-Yepes J., Morrison R. A., Palenik B., Tresguerres M., 2014. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conserv. Physiol. 2, 1-9.
  • Haverkamp T. H., Schouten D., Doeleman M., Wollenzien U., Huisman J., Stal L. J., 2009. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J. 3, 397-408.
  • Hopcroft R.R., Roff J.C., 1991. Phytoplankton size fractions in tropical nerictic ecosystems near Kingston, Jamaica. J. Plankton Res. 13, 1069-1088.
  • Jakubowska N., Szeląg-Wasielewska E., 2015. Toxic Picoplanktonic Cyanobacteria-Review. Marine Drugs 13, 1497-1518.
  • Jasser I., 1993. Pikoplankton, najdrobniejszy składnik fitoplanktonu: występowanie, struktura i funkcja. Wiadomości Ekologiczne 39, 3-19.
  • Jasser I., 2006. The relationship between autotrophic picoplankton (APP) - the smallest autotrophic component of food web and the trophic status and depth of lakes. Ecohydrol. Hydrobiol. 6, 69-77.
  • Johnson P. W., Sieburth J. M. N., 1982. In situ morphology and occurrence of eukariotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18, 318-327.
  • Joint I. R., Owens N. J. P., Pomroy A. J., 1986. Seasonal production of photosynthetic picoplankton and nanoplankton in the Celtic Sea. Marine Ecol. Progr. Ser. 28, 251-258.
  • Journey C. A., Beaulieu K. M., Bradley P. M., 2013. Environmental factors that influence cyanobacteria and geosmin occurrence in reservoirs. [W:] Current Perspectives in Contaminant hydrology and water resources sustainability. Bradley P. M. (red.). Tech. Online, Rijeka, Croatia.
  • Jyothibabu R., Mohan A.P., Jagadeeesan L., Anjusha A., Muraleedharan K.R., Lallu K.R., Kiran K., Ullas N., 2013. Ecology and trophic preference of picoplankton and nanoplankton in the Gulf of Mannar and the Palk Bay, southeast coast of India. J. Marine Syst. 111-112, 29-44.
  • Komarek J., 1996. Taxonomic and species delineation of picoplanktonic cyanoprocaryotes. Algol. Stud. 83, 119-179.
  • Kuosa H., 1991. Picoplanktonic algae in the northern Baltic Sea: Seasonal dynamics and flagellate grazing. Marine Ecol. Progr. Ser. 73, 269-276.
  • Landsberg J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fisheries Sci. 10, 113-390.
  • Leao P. N., Engene N., Antunes A., Gerwick W.H., Vasconcelos V., 2012. The chemical ecology of cyanobacteria. Nat. Prod. Rep. 29, 372-391.
  • Martins R., Fernandez N., Beiras R., Vasconcelos V., 2007. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 50, 791-799.
  • Martins R. F., Ramos M. F., Herfindal L., Sousa J. A., Skærven K., Vasconcelos V. M., 2008. Antimicrobial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus. Marine Drugs 6, 1-11.
  • Mazur-Marzec H., 2006. Characterization of phycotoxins produced by cyanobacteria. Oceanol. Hydrobiol. Stud. 35, 85-109.
  • Mazur-Marzec H., Sutryk K., Kobos J., Hebel A., Hohlfeld N., Błaszczyk A., Jasser I., 2013. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701, 235-252.
  • Murrell M. C., Lores E. M. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J. Plankton Res. 26, 371-382.
  • Neilan B. A., 2002. The molecular evolution and DNA profiling of toxic cyanobacteria. Curr. Issues Mol. Biol. 4, 1-11.
  • Ning X., Cloern J. E., Cole B. E., 2000. Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnol. Oceanogr. 45, 695-702.
  • Not F., Valentin K., Romari K., Lovejoy C., Massana R., Töbe K., Medlin, L. K., 2007. Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315, 253-255.
  • Oudra B., Loudiki M., Vasconcelos V., 2002. Microcyctins from cyanobacteria in reservoirs of Morocco. Environ. Toxicol. 17, 32-39.
  • Parvathi A., Zhong X., Pradeep Ram A.S., Jacquet S., 2014. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva. Hydrol. Earth Syst. Sci. 18, 1073-1087.
  • Passoni S., Callieri C., 2000. Picocyanobacteria single forms aggregated and microcolonies. Verhandlungen des Internationalen Verein Limnologie 27, 1879-1883.
  • Paz-Yepes J., Brahamsha B., Palenik B., 2013. Role of a Microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc. Natl. Acad. Sci. USA 110, 12030-12035.
  • Phlips E. J., Badylak S., Lynch T. C., 1999. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Oceanogr. 44, 1166-1175.
  • Platt T., Subba-Rao D. V., Irwin B., 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301, 702-704.
  • Richardson T. L., Jackson G. A., 2007. Small phytoplankton and carbon export from the surface ocean. Science 315, 838-840.
  • Rippka R., 1988. Isolation and purification of cyanobacteria. Meth. Enzymol. 167, 3-27.
  • Sánchez-Baracaldo P., Handley B.A., Hayes P.K., 2008. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specificquantitative PCR. Microbiology 154, 3347-3357.
  • Selheim F., Herfindal L., Martins R., Vasconcelos V., Døskeland S. O., 2005. Neuro-apoptogenic and blood platelet targeting toxins in benthic marine cyanobacteria from the Portuguese coast. Aquatic Toxicol. 74, 294-306.
  • Sorokin Y. I., Dallocchio F., 2008. Dynamics of phosphorus in the Venice lagoon during a picocyanobacteria bloom. J. Plankton Res. 30, 1019-1026.
  • Sorokin Y. I., Zakuskina O. Y., 2010. Features of the Comacchio ecosystem transformed during persistent bloom of picocyanobacteria. J. Oceanogr. 66, 373-387.
  • Sorokin P. Y., Sorokin Y. I., Boscolo R., Giovanardi O., 2004. Bloom of picocyanobacteria in the Venice lagoon during summer-autumn 2001: Ecological sequences. Hydrobiologia 523, 71-85.
  • Stal L. J., Albertan, P., Bergman B., Von Bröckel K., Gallon J. R., Hayes P. K., Walsby A. E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - Responses to a changing environment. Continent. Shelf Res. 23, 1695-1714.
  • Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765-775.
  • Stockner J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int. Rev. Ges. Hydrobiol. 76, 483-493.
  • Stockner J. G., Antia N. J., 1986. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Canad. J. Fisheries Aquat. Sci. 43, 2472-2503.
  • Stransky H., Hager A., 1970. Das Carotinoid-muster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. 4. Cyanophyceae und Rhodophyceae. Archiv fur Mikrobiol. 72, 84-96.
  • Suttle C. A., Harrison P. J., 1986. Phosphate uptake rates of phytoplankton assemblages grown at different dilution rates in semi-continuous culture. Canad. J. Fisheries Aquat. Sci. 43, 1474-1481.
  • Śliwińska-Wilczewska S., Pniewski F., Latała A., 2016. Allelopathic activity of the picocyanobacterium Synechococcus sp. under varied light, temperature and salinity conditions. Int. Rev. Hydrobiol. 101, 69-77.
  • Tai V., Palenik B., 2009. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3, 903-915.
  • Tai V., Burton R. S., Palenik B., 2011. Temporal and spatial distributions of marine Synechococcus in the Southern California Bight assessed by hybridization to bead-arrays. Marine Ecol. Progr. Ser. 426, 133-147.
  • Uysal, Z., 2000. Pigments, size and distribution of Synechococcus spp. in the Black Sea. J. Marine Syst. 24, 313-326.
  • Waterbury J. B., Watson S. W., Guillard R. R. L., Brand L. E. E., 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277, 293-294.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p465kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.