Preferences help
enabled [disable] Abstract
Number of results
2017 | 66 | 3 | 441-447
Article title

Ewersja kresomózgowia - ewolucyjna specyfika mózgu ryb promieniopłetwych (Actinopterygii)

Title variants
Eversion of telencephalon - the evolutionary specificity of actinopterygian fish
Languages of publication
Ryby promieniopłetwe (Actinopterygii) stanowią największą grupę żyjących kręgowców, liczącą obecnie około 30 tysięcy gatunków. W obrębie tej grupy taksonomicznej panuje olbrzymie zróżnicowanie pod względem anatomicznym, behawioralnym, a także ekologicznym.
W ostatnich latach obserwujemy wzrost zainteresowania badaczy budową morfogentyczną kresomózgowia ryb promieniopłetwych, do których należy Danio rerio, organizm modelowy coraz częściej wykorzystywany do badań nad wczesną fazą rozwoju mózgu. Niniejsza praca jest próbą opisania zjawiska ewersji. Zjawisko to wymaga dalszych prac nad wyjaśnieniem przyczyn oraz poznaniem mechanizmów molekularnych, a także skutków behawioralnych istnienia tego procesu.
Actinopteryngian fish constitute the biggest group of living vertebrates, which currently comprises around 30 thousand species. Within this taxonomic group there occurs a huge differentiation in respect of anatomy, behaviour and ecological enviroment.
In the last few years we have observed an increasing interest of scientists in the morphogenetic structure of the telencephalon of actinopheryngians. Danio rerio, a model organism for this group of fish, is increasingly used in studies on early phase of brain development. What particularly deserves attention is the distinct type of development of this part of brain in comparison with that of other vertebrates. The cause of this diversity is a phenomenon called eversion. This work consists an attempt to describe the phenomenon of eversion, which still needs further work to explain the causes and molecular mechanisms of cognition and behavioural effects of appearance of this process.
Physical description
  • Adrio F., Anadón R., Rodrígues-Moldes I., 2002. Distribution of tyrosine hydroxylase (TH) and dopamine hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso). J. Comp. Neurol. 448, 280-297.
  • Alunni A., Blin M., Deschet K., Bourrat F., Vernier P., Rétaux S., 2004. Cloning and developmental expression patterns of D lx2, Lhx7 and L hx9 in the medaka fish (Orizias latipes). Mech. Dev. 121, 977-983.
  • Braford M. R. Jr., 1995. Comparative aspects of forebrain organization in the ray-finned fishes: Touchstones or not? Brain Behav. Evol. 46, 259-274.
  • Bruce L., Braford M. R. Jr., 2008. Evolution of the limbic system. [W:] New encyclopedia of neuroscience. Squire L., Albright T., Bloom F., Gage F., Spitzer N. (red.). San Diego, CA, Elsevier Academic Press.
  • Butler A. B., 2000. Topography and topology of the teleosts telencephalon: a paradox resolved. Neurosci. Lett. 293, 95-98.
  • Butler A. B., Hodos W., 1996. Comparative Vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York.
  • Costagli A., Kapsimali M., Wilsaon S. W., Milone M., 2002. Conserved and divergent patterns of Reelin exppresions in the zebrafish central nervous system. J. Comp. Neurol. 450, 73-93.
  • Gage S. P., 1893. The brain of Diemyctilus viridescens from larval to adult life and comparison with the brain of Amia and Petromyzon. [W:] Wilder quarter century book. Ithaca, NY, Comstock Publishing Co., 259-314.
  • Holmgren N.,1920. Zur Anatomie und Histologie des Vorder- und Zwischenhirns der Knochenfische. Acta Zool.1, 137-315.
  • Holmgren N., 1922. Points of view concerning forebrain morphology in lower vertebrates. J. Comp. Neurol. 34, 491-459.
  • Ishikawa Y., Yamamoto N., Yoshimoto M., Yasuda T., Maruyama K., Kage T., Takeda H., Ito H., 2007. Developmental origin of diencephalic senseory relay nuclei in teleosts. Brain Behav. Evol. 69, 87-95.
  • Johnston J. B., 1911. The thelecephalon of ganoids and teleost. J. Com. Neurol. 21, 489-591.
  • Kage T., Takeda H., Yasuda T., Maruyama K., Yamamoto N., Yoshimoto M., Araki K., Inohaya K., Okamoto H., Yasumatsu S., Watanabe K., Ito H., Ishikawa Y., 2004. Morphogenesis and regionalization of the medaka embryonic brain. J. Comp. Neurol. 476, 219-239.
  • Mark R., Braford M. R. Jr., 2009. Stalking the everted telencephalon. comparisons of forebrain organizationin basal ray-finned fishes and teleosts. Brain Behav. Evol. 74, 56-76.
  • Meek J., Nieuwenhuys R., 1998. Holosteans and teleosts. [W:] The central nervous system of vertebrates. Tom 2. Nieuwenhuys R, Donkelaar H. J. ten, Nicholson C. (red.). New York, Springer, 759-937.
  • Nelson J. S., 2006. Fishes of the World. Hoboked, John Wiley & Sons Inc., New Jersey.
  • Nieuwenhuys R., 1963. The comparative anatomy of the actinopterygian forebrain. J. Hirnforsch. 6, 171-200.
  • Nieuwenhuys R., 1969. A survey of the structure of the forebrain in higher bony fishes (Osteichthyes). Ann. NY Acad. Sci. 167, 31-64.
  • Nieuwenhuys R., 2009. The forebrain of actinopterygians revisited. Brain Behav. Evol. 73, 229-252.
  • Nieuwenhuys R., 2011. The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct. Funct. 215, 141-157.
  • Northcutt R. G., 2006. Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J. Comp. Neurol. 494, 903-943.
  • Northcutt R. G., Bradford M. R. Jr., 1980. New observations on the organization and evolution of the telencephalon of actinopterygian fishes. [W:] Comparative neurology of the telencephalon. Ebbesson S. O. E. (red.). Plenum Press, New York, 41-98.
  • Puelles L., Rubenstein J. L. R., 1993. Expression patterns of homeobox and other putative regulatory genes in the embyonic mouse forebrain suggests a neuromeric organization. Trends Neurosci. 16, 472-479.
  • Romanow M., 2009. Cytoarchitektonika kresomózgowia Acanthurus lineatus (Acanthuridae, Perciformes). Słupskie Prace Biologiczne 6.
  • Saito K., Watanabe S., 2006. Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav. Brain Res. 172, 187-194.
  • Salas C., Broglio C., Rodríguez F., 2003. Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity. Brain Behav. Evol. 62, 72-82.
  • Striedter G. F., Northcutt G., 2006. Head size constrains forebrain development and evolution in ray-finned fishes. Evol. Develop. 215-222.
  • Ullich W., 1973. Zoopsychologia. Wydawnictwo Naukowe PWN, Warszawa.
  • Wullimann M. F., Puelles L., 1999. Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat. Embryol. 199, 329-348.
  • Wullimann M. F., Mueller T., 2004. Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J. Comp. Neurol. 475, 143-162.
  • Yamamoto N. Ito H. 2005. Fiber connections of the anterior preglomerular nucleus in cyprinids with notes on telencephalic connections of the preglomerular complex. J. Comp. Neurol. 491, 212-233.
  • Yamamoto N., Ishikawa Y., Xue H. G., Bahaxar N., Sawai I., Yang C. Y., Ozawa H., Ito H., 2007. A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain Behav. Evol. 69, 96-104.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.