PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 3 | 389-399
Article title

Rola witaminy D₃ i jej receptora w żeńskim układzie rozrodczym

Content
Title variants
EN
The role of vitamin D₃ and its receptor in the female reproductive system
Languages of publication
PL EN
Abstracts
PL
Badania ostatnich lat sugerują pogłębiający się problem niedoboru witaminy D3. Oprócz dobrze poznanej roli witaminy D3 w utrzymaniu homeostazy wapniowo-fosforanowej, coraz większym zainteresowaniem cieszy się jej udział w regulacji funkcji żeńskiego układu rozrodczego. Występowanie receptora witaminy D3 w jajnikach, endometrium macicy oraz łożysku świadczy, że są to tkanki docelowe dla tej witaminy. Liczne badania potwierdzają, iż obniżony poziom aktywnych form witaminy D3 sprzyja zaburzeniom budowy i funkcji jajnika oraz macicy. Dotychczas zaobserwowano istotną rolę kalcytriolu w procesach folikulogenezy, steroidogenezy, implantacji zarodka, przebiegu ciąży oraz utrzymaniu zdrowia potomstwa. Obniżony poziom witaminy D3 sprzyja patologiom żeńskiego układu rozrodczego, tj. zespół policystycznych jajników, przedwczesna niewydolność jajników, endometrioza czy mięśniaki macicy. Ekspozycja na promieniowanie słoneczne i zbilansowana dieta, pozwalają na utrzymanie prawidłowego stężenia kalcydiolu w surowicy krwi. Poszerzenie wiedzy na temat roli witaminy D3 w patogenezie schorzeń żeńskiego układu rozrodczego, może przyczynić się do wykorzystania jej suplementacji jako skutecznego sposobu profilaktyki i leczenia.
EN
Recent studies suggested an increasing problem with deficiency of vitamin D3. Except for the well-known role of vitamin D3 in the maintenance of calcium and phosphate homeostasis, its contribution to the regulation of the female reproduction becomes more popular. The presence of vitamin D3 receptor in the ovary, endometrium and placenta indicates that these tissues are target for vitamin D3 action. Many studies confirm that low level of active vitamin D3 promotes the occurrence of abnormalities in the structure and function of the ovary and uterus. To date, a significant role of calcitriol in folliculogenesis, steroidogenesis, embryo implantation, pregnancy and the offspring health has been observed. Decreased level of vitamin D3 associated with many pathologies in the female reproductive system such as polycystic ovarian syndrome, premature ovarian failure, endometriosis or uterine fibroids. Exposure to sunlight and balanced diet help to maintain normal levels of calcidiol in blood serum. Increasing knowledge about the role of vitamin D3 in female reproductive pathogenesis may contribute to the use of adequate vitamin D3 supplementation as an effective tool in the preventive and therapeutic treatment.
Journal
Year
Volume
66
Issue
3
Pages
389-399
Physical description
Dates
published
2017
Contributors
author
  • Katedra Fizjologii i Endokrynologii Zwierząt, Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Al. Mickiewicza 24/28, 30-059 Kraków, Polska
  • Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
  • Katedra Fizjologii i Endokrynologii Zwierząt, Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Al. Mickiewicza 24/28, 30-059 Kraków, Polska
  • Ośrodek Medycyny Eksperymentalnej i Innowacyjnej, Uniwersyteckie Centrum Medycyny Weterynaryjnej UJ-UR, ul. Rędzina 1C, 30-248 Kraków, Polska
  • Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
  • Center of Experimental and Innovative Medicine, University Center of Veterinary Medicine JU-AU, Rędzina 1C, 30-248 Krakow, Poland
References
  • Alshahrani F., Aljohani N., 2013. Vitamin D: deficiency, sufficiency and toxicity. Nutrients 5, 3605-3616.
  • Bagot C. N., Troy P. J., Taylor H. S., 2000. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther. 7, 1378-1384.
  • Bergadà L., Pallares J., Maria Vittoria A., Cardus A., Santacana M., Valls J., Cao G., Fernàndez E., Dolcet X., Dusso A. S., Matias-Guiu X., 2014. Role of local bioactivation of vitamin D by CYP27A1 and CYP2R1 in the control of cell growth in normal endometrium and endometrial carcinoma. Lab. Invest. 94,608-622.
  • Brakta S., Diamond J. S., Al-Hendy A., Diamond M. P., Halder S. K., 2015. The role of vitamin D in uterine fibroid biology. Fertil. Steril. 104, 698-706.
  • Brzozowska M., Karowicz-Bilińska A., 2013. Rola niedoboru witaminy D w patofizjologii zaburzeń występujących w zespole policystycznych jajników. Ginekol. Pol. 84, 456-460.
  • Burt M. G., Mangelsdorf B. L., Stranks S. N., Mangoni A. A., 2016. Relationship between Vitamin D status and autonomic nervous system activity. Nutrients 8, 565.
  • Cheng J. B., Levine M. A., Bell N. H., Mangelsdorf D. J., Russell D. W., 2004. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA 101, 7711-7715.
  • Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G., 2016. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96, 365-408.
  • Ciavattini A., Serri M., Delli Carpini G., Morini S., Clemente N., 2017. Ovarian endometriosis and vitamin D serum levels. Gynecol. Endocrinol. 33, 164-167.
  • Czerwiński E., Borowy P., Kumorek A., 2012. Witamina D a układ mięśniowo-szkieletowy. Stand. Med. 9, 649-654.
  • Dabrowski F. A., Grzechocinska B., Wielgos M., 2015. The role of vitamin D in reproductive health - a trojan horse or the golden fleece? Nutrients 7, 4139-4153.
  • De Leo V., Lanzetta D., d'Antona D., la Marca A., Morgante G., 1998. Hormonal effects of flutamide in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 83, 99-102.
  • Deeb K. K., Trump D. L., Johnson C. S., 2007. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat. Rev. Cancer 7, 684-700.
  • Emam M. A., Abouelroos M. E., Gad F. A., 2016. Expression of calbindin-D9k and vitamin D receptor in the uterus of Egyptian buffalo during follicular and luteal phases. Acta Histochem. 118, 471-477.
  • Ersoy E., Ersoy A. O., Yildirim G., Buyukkagnici U., Tokmak A., Yilmaz N., 2016. Vitamin D levels in patients with premature ovarian failure. Ginekol. Pol. 87, 32-36.
  • Garbedian K., Boggild M., Moody J., Liu K. E., 2013. Effect of Vitamin D status on clinical pregnancy rates following in vitro fertilization. CMAJ 1, 77-82.
  • Grineva E. N., Karonova T., Micheeva E., Belyaeva O., Nikitina I. L., 2013. Vitamin D deficiency is a risk factor for obesity and diabetes type 2 in women at late reproductive age. Aging 5, 575-581.
  • Gruber B. M., 2015. The phenomenon of vitamin D. Post. Hig. Med. Dosw. 69,127-139.
  • Grundmann M., von Versen-Höynck F., 2011. Vitamin D - roles in women's reproductive health? Reprod. Biol. Endocrinol. 9, 146.
  • Halder S. K., Osteen K. G., Al-Hendy A., 2013. Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Hum. Reprod. 28, 2407-2416.
  • Harris H. R., Chavarro J. E., Malspeis S., Willett W. C., Missmer S. A., 2013. Dairy-food, calcium, magnesium, and vitamin D intake and endometriosis: a prospective cohort study. Am. J. Epidemiol. 177, 420-430.
  • Haussler M. R., Jurutka P. W., Mizwicki M., Norman A. W., 2011. Vitamin D receptor (VDR)-mediated actions of 1,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 25, 543-559.
  • Hodgins M. B., Murad S., 1986. 1, 25-Dihydroxycholecalciferol stimulates conversion of androstenedione into oestrone by human skin fibroblasts in culture. J. Endocrinol. 110, R1-R4.
  • Holick M. F., Binkley N. C., Bischoff-Ferrari H. A., Gordon C. M., Hanley D. A., Heaney R. P., Murad M. H., Weaver C. M., 2011. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911-1930.
  • Hossein-nezhad A., Holick M. F., 2013. Vitamin D for health: A global perspective. Mayo Clin. Proc. 8, 720-755.
  • Hwang J. H., Wang T., Lee K. S., Joo J. K., Lee H. G., 2013. Vitamin D binding protein plays an important role in the progression of endometriosis. Int. J. Mol. Med. 32, 1394-1400.
  • Irani M., Merhi Z., 2014. Role of Vitamin D in ovarian physiology and its implication in reproduction: A systematic review. Fertil. Steril. 102, 460-468.
  • Kara M., Ekiz T., Kara Ö., Tiftik T., Malas F. Ü., Özbudak Demir S., Özgirgin N., 2017. Does vitamin D affect muscle strength and architecture? An isokinetic and ultrasonographic study. Asia Pac. J. Clin. Nutr. 26, 85-88.
  • Kim J. J., Choi Y. M., Chae J. S., Hwang K. R., Yoon S. H., Kim M. J., Kim S. M., Ku S. Y., Kim S. H., Kim J. G., 2014. Vitamin D deficiency in women with polycystic ovary syndrome. Clin. Exp. Reprod. Med. 41, 80-85.
  • Kmieć P., Żmijewski M., Waszak P., Sworczak K., Lizakowska-Kmieć M., 2014. Vitamin D deficiency during winter months among an adult, predominantly urban, population in northern Poland. Endokrynol. Pol. 65, 105-113.
  • Kmieć P., Żmijewski M., Lizakowska-Kmieć M., Sworczak K., 2015. Widespread vitamin D deficiency among adults from northern Poland (54°N) after months of low and high natural UVB radiation. Endokrynol. Pol. 66, 30-38.
  • Kubis A.M., Piwowar A., 2015. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res. Rev. 24, 126-137.
  • Lerchbaum E., Obermayer-Pietsch B., 2012. Vitamin D and fertility: a systematic review. Eur. J. Endocrinol. 166, 765-778.
  • Luk J., Torrealday S., Neal Perry G., Pal L., 2012. Relevance of vitamin D in reproduction. Hum. Reprod. 27, 3015-3027.
  • Lv S. S., Wang J. Y., Wang X. Q., Wang Y., Xu Y., 2016. Serum vitamin D status and in vitro fertilization outcomes: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 293, 1339-1345.
  • Merhi Z., Doswell A., Krebs K., Cipolla M., 2014. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab. 99, E1137- E1145.
  • Mirzakhani H., Litonjua A. A., McElrath T. F., O'Connor G., Lee-Parritz A., Iverson R., Macones G., Strunk R. C., Bacharier L. B., Zeiger R., Hollis B. W., Handy D. E., Sharma A., Laranjo N., Carey V., Qiu W., Santolini M., Liu S., Chhabra D., Enquobahrie D. A., Williams M. A., Loscalzo J., Weiss S. T., 2016. Early pregnancy vitamin D status and risk of preeclampsia. J. Clin. Invest. 126, 4702-4715.
  • Murthi P., Yong H. E., Ngyuen T. P., Ellery S., Singh H., Rahman R., Dickinson H., Walker D. W., Davies-Tuck M., Wallace E. M., Ebeling P. R., 2016. Role of the placental Vitamin D receptor in modulating feto-placental growth in fetal growth restriction and preeclampsia-affected pregnancies. Front. Physiol. 7, 43.
  • Muscogiuri G., Altieri B., de Angelis C., Palomba S., Pivonello R., Colao A., Orio F., 2017. Shedding new light on female fertility: The role of vitamin D. Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-017-9407-2.
  • Nagpal S., Na S., Rathnachalam R., 2005. Noncalcemic actions of vitamin D receptor ligands. Endocr. Rev. 26, 662-687.
  • Ota K., Dambaeva S., Han A. R., Beaman K., Gilman-Sachs A., Kwak-Kim J., 2014. Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity. Hum. Reprod 29,208-219.
  • Paffoni A., Ferrari S., Viganò P., Pagliardini L., Papaleo E., Candiani M., Tirelli A., Fedele L., Somigliana E., 2014. Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J. Clin. Endocrinol. Metab. 99, 2372-2376.
  • Palacios C., De-Regil L. M., Lombardo L. K., Peña-Rosas J. P., 2016. Vitamin D supplementation during pregnancy: Updated meta-analysis on maternal outcomes. J. Steroid. Biochem. Mol. Biol. 164, 148-155.
  • Panda D. K., Miao D., Tremblay M. L., Sirois J., Farookhi R., Hendy G. N., Goltzman D., 2001. Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl. Acad. Sci. USA 98, 7498-7503.
  • Piotrowska A., Wierzbicka J., Żmijewski M. A., 2016. Vitamin D in the skin physiology and pathology. Acta Biochim. Pol. 63, 89-95.
  • Płudowski P., Karczmarewicz E., Bayer M., Carter G., Chlebna-Sokół D., Czech-Kowalska J., Dębski R., Decsi T., Dobrzańska A., Franek E., Głuszko P., Grant W. B., Holick M. F., Yankovskaya L., Konstantynowicz J. i współaut., 2013. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe - recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 64, 319-327.
  • Ponsonby A. L., Lucas R. M., Lewis S., Halliday J., 2010. Vitamin D status during pregnancy and aspects of offspring health. Nutrients 2, 389-407.
  • Prentice A., Goldberg G. R., Schoenmakers I., 2008. Vitamin D across the lifecycle: physiology and biomarkers. Am. J. Clin. Nutr. 88, 500S-506S.
  • Sayegh L., Fuleihan Gel-H., Nassar A. H., 2014. Vitamin D in endometriosis: a causative or confounding factor? Metabolism 63, 32-41.
  • Shahbazi M., Jeddi-Tehrani M., Zareie M., Salek-Moghaddam A., Akhondi M. M., Bahmanpoor M., Sadeghi M. R., Zarnani A. H., 2011. Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 32, 657-664.
  • Shahrokhi S. Z., Ghaffari F., Kazerouni F., 2016. Role of vitamin D in female reproduction. Clin. Chim. Acta 455, 33-38.
  • Shin J. S., Choi M. Y., Longtine M. S., Nelson D. M., 2010. Vitamin Deffects on pregnancy and the placenta. Placenta 31, 1027-1034.
  • Smolikova K., Mlynarcikova A., Scsukova S., 2013. Effect of 1α,25-dihydroxyvitamin D3 on progesterone secretion by porcine ovarian granulosa cells. Endocr. Regul. 47, 123-131.
  • So-Hye H., Jae-Eon L., Hong Sung K., Young-Jin J., DaeYoun H., Jae Ho L., Seung Yun Y., Seung-Chul K., Seong-Keun C., Beum-Soo A., 2016. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes. J. Biomed. Res. 30, 203-208.
  • Sowell K. D., Keen C. L., Uriu-Adams J. Y. 2015. Vitamin D and reproduction: from gametes to childhood. Healthcare 3, 1097-1120.
  • Szczepańska M., Wirstlein P., Skrzypczak J., 2007. Ocena ekspresji genów z grupy HOXA w endometrium kobiet z endometriozą. Przegl. Menopauz. 5, 266-271.
  • Tukaj C., 2008. Właściwy poziom witaminy D warunkiem zachowania zdrowia. Post. Hig. Med. Dosw. 62, 502-510.
  • Viganò P., Lattuada D., Mangioni S., Ermellino L., Vignali M., Caporizzo E., Panina-Bordignon P., Besozzi M., Di Blasio A. M., 2006. Cycling and early pregnant endometrium as a site of regulated expression of the vitamin D system. J. Mol. Endocrinol. 36, 415-424.
  • Wehr E., Pieber T. R., Obermayer-Pietsch B., 2011. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J. Endocrinol. Invest. 34, 757-763.
  • Zabul P., Wozniak M., Slominski A. T., Preis K., Gorska M., Korozan M., Wieruszewski J., Zmijewski M. A., Zabul E., Tuckey R., Kuban-Jankowska A., Mickiewicz W., Knap N., 2015. A proposed molecular mechanism of high-dose Vitamin D3 supplementation in prevention and treatment of preeclampsia. Int. J. Mol. Sci. 16, 13043-13064.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p389kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.