Preferences help
enabled [disable] Abstract
Number of results
2017 | 66 | 3 | 365-377
Article title

Naturalne i syntetyczne modulatory aktywności sirtuin

Title variants
Natural and synthetic modulators of sirtuin activity
Languages of publication
Sirtuiny należą do rodziny deacetylaz histonów zależnych od NAD. Ich substratami jest wiele enzymów i czynników transkrypcyjnych, a kontrolując ich aktywność sirtuiny uczestniczą w utrzymaniu homeostazy ustroju. Sirtuiny mogą ograniczać rozwój schorzeń związanych z wiekiem, w tym nowotworów. Ich aktywność modulowana jest przez wiele czynników żywieniowych. Restrykcja kaloryczna oraz niektóre aminokwasy przyczyniają się do wzrostu aktywności sirtuin. Natomiast nadmierne spożycie tłuszczu i węglowodanów hamuje ich aktywność. Naturalnymi aktywatorami sirtuin, występującymi w żywności są niektóre związki z grupy flawonoli, katechin, alkaloidów oraz izoflawonów. Aktualnie trwają prace nad znalezieniem nowych syntetycznych aktywatorów sirtuin. Ze względu na potencjalny udział niektórych sirtuin w patogenezie chorób neurodegeneracyjnych poszukuje się inhibitorów tych enzymów.
Sirtuins belong to the family of NAD-dependent histone deacetylases. Sirtuin substrates include a great number of enzymes and transcription factors. In this way sirtuins regulate homeostasis of the whole organism. Sirtuins can limit the development of age-related diseases, including cancers. Their activity is modulated by many nutritional factors. Caloric restriction and some amino acids contribute to sirtuins stimulation. Excessive intake of fat and carbohydrates inhibits their activity. Daily diet includes natural sirtuin activators such as flavanoles, catechins, alcaloids and isoflavonoids. Currently, new synthetic activators of sirtuins are under investigations. In view of possible involvement of some sirtuins in pathogenesis of neurodegenerative diseases, search for inhibitors of this class of enzymes is of particular importance.
Physical description
  • Alberdi G., Rodríguez V. M., Miranda J., Macarulla M. T., Churruca I., Portillo M. P., 2013. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 141, 1530-1535.
  • Bagul P. K., Dinda A. K., Banerjee S. K., 2015. Effect of resveratrol on sirtuins expression and cardiac complications in diabetes. Biochem. Biophys. Res. Comm. 468, 221-227.
  • Bayram B., Ozcelik B., Grimm S., Roeder T., Schrader C., Ernst I. M., Wagner A. E., Grune T., Frank J., Rimbach G., 2012. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res. 15, 71-81.
  • Bleeker J. C., Houtkooper R. H., 2016. Sirtuin activation as a therapeutic approach against inborn errors of metabolism. J. Inherit. Metab. Dis. 39, 565-572.
  • Borengasser S. J., Kang P., Faske J., Gomez-Acevedo H., Blackburn M. L., Badger T. M., Shankar K., 2014. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9, e84209.
  • Cao D., Wang M., Qiu X., Liu D., Jiang H., Yang N., Xu R. M., 2015. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29, 1316-1325.
  • Cao Y., Jiang X., Ma H., Wang Y., Xue P., Liu Y., 2016. SIRT1 and insulin resistance. J. Diabet. Complicat. 30, 178-183.
  • Carafa V., Rotili D., Forgione M., Cuomo F., Serretiello E., Hailu G. S., Jarho E., Lahtela-Kakkonen M., Mai A., Altucci L., 2016. Sirtuin functions and modulation: from chemistry to the clinic. Clin. Epigenet. 8, 61.
  • Chen G. C., Su H. M., Lin Y. S., Tsou P. Y., Chyuan J. H., Chao P. M., 2016. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway. J. Nutr. Biochem. 33, 28-35.
  • Chen J. R., Lazarenko O. P., Blackburn M. L., Badger T. M., Ronis M. J., 2014. Soy protein isolate inhibits high-fat diet-induced senescence pathways in osteoblasts to maintain bone acquisition in male rats. Endocrinology 156, 475-487.
  • Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R., 2013. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52, 303-313.
  • Chen T., Li J., Liu J., Li N., Wang S., Liu H., Zeng M., Zhang Y., Bu P., 2015. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am. J. Physiol. Heart Circ. Physiol. 308, H424-H434.
  • Chen Y. L., Peng H. C., Wang X. D., Yang S. C., 2015. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats. Hepatobiliary Surg Nutr. 4, 172-183.
  • Chopra V., Quinti L., Kim J., Vollor L., Narayanan K. L., Edgerly C., Cipicchio P. M., Lauver M. A., Choi S. H., Silverman R. B., Ferrante R. J., Hersch S., Kazantsev A. G., 2012. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models. Cell Rep. 6, 1492-1497.
  • Cueno M. E., Tamura M., Ochiai K., 2015. Middle-aged rats orally supplemented with gel-encapsulated catechin favorably increases blood cytosolic NADPH levels. Phytomedicine 22, 425-430.
  • D'Antona G., Ragni M., Cardile A., Tedesco L., Dossena M., Bruttini F., Caliaro F., Corsetti G., Bottinelli R., Carruba M. O., Valerio A., Nisoli E., 2010. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362-372.
  • Davis J. M., Murphy E. A., Carmichael M. D., Davis B., 2009. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1071-R1077.
  • de Picciotto N. E., Gano L. B., Johnson L. C., Martens C. R., Sindler A. L., Mills K. F., Imai S., Seals D. R., 2016. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522-530.
  • Desai M., Han G., Ross M. G., 2016. Programmed hyperphagia in offspring of obese dams: Altered expression of hypothalamic nutrient sensors, neurogenic factors and epigenetic modulators. Apetite 99, 193-199.
  • Donmez G., Outeiro T. F., 2013. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol. Med. 5, 344-352.
  • Drew J. E., Farquharson A. J., Horgan G. W., Williams L. M., 2016. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding. J. Nutr. Biochem. 37, 20-29.
  • Escande C., Nin V., Price N. L., Capellini V., Gomes A. P., Barbosa M. T., O'Neil L., White T. A., Sinclair D. A., Chini E. N., 2013. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084-1093.
  • Feige J. N., Lagouge M., Canto C., Strehle A., Houten S. M., Milne J. C., Lambert P. D., Mataki C., Elliott P. J., Auwerx J., 2008. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358.
  • Feldman J. L., Baeza J., Denu J. M., 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350-31356.
  • Fry J. L., Al Sayah L., Weisbrod R. M., Van Roy I., Weng X., Cohen R. A., Bachschmid M. M., Seta F., 2016. Vascular smooth muscle sirtuin-1 protects against diet-induced aortic stiffness. Hypertension 68, 775-84.
  • Ganesan S., Faris A. N., Comstock A. T., Chattoraj S. S., Chattoraj A., Burgess J. R., Curtis J. L., Martinez F. J., Zick S., Hershenson M. B., Sajjan U. S., 2010. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir. Res. 11, e131.
  • Gariani K., Ryu D., Menzies K. J., Yi H. S., Stein S., Zhang H., Perino A., Lemos V., Katsyuba E., Jha P., Vijgen S., Rubbia-Brandt L., Kim Y. K., Kim J. T., Kim K. S., Shong M., Schoonjans K., Auwerx J., 2017. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132-141.
  • Grabowska W., Suszek M., Wnuk M., Lewinska A., Wasiak E., Sikora E., Bielak-Zmijewska A., 2016. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget. 15, 19201-19213.
  • Greiss S., Gartner A., 2009. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells 28, 407-415.
  • Gutierrez-Salmean G., Ortiz-Vilchis P., Vacaseydel C. M., Garduno-Siciliano L., Chamorro-Cevallos G., Meaney E., Villafana S., Villarreal F., Ceballos G., Ramirez-Sanchez I., 2014. Effects of (-)-epicatechin on a diet-induced rat model of cardiometabolic risk factors. Eur. J. Pharmacol. 728, 24-30.
  • Han L., Zhao G., Wang H., Tong T., Chen J., 2014. Calorie restriction upregulated sirtuin 1 by attenuating its ubiquitin degradation in cancer cells. Clin. Exp. Pharmacol. Physiol. 41, 165-168.
  • Haohao Z., Guijun Q., Juan Z., Wen K., Lulu C., 2015. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion. J. Physiol. Biochem. 71, 121-131.
  • Hart N., Sarga L., Csende Z., Koltai E., Koch L. G., Britton S. L., Davies K. J., Kouretas D., Wessner B., Radak Z., 2013. Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food Chem. Toxicol. 61, 53-59.
  • Holloway K. R., Barbieri A., Malyarchuk S., Saxena M., Nedeljkovic-Kurepa A., Cameron Mehl M., Wang A., Gu X., Pruitt K., 2013. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol. 27,480-490.
  • Hou X., Xu S., Maitland-Toolan K. A., Sato K., Jiang B., Ido Y., Lan F., Walsh K., Wierzbicki M., Verbeuren T. J., Cohen R. A., Zang M., 2008. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015-20026.
  • Howitz K. T., Bitterman K. J., Cohen H. Y., Lamming D. W., Wood J. G., Zipkin R. E., Chung P., Kisielewski A., Zhang L. L., Scherer B., Sinclair D. A., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.
  • Hu A., Huang J. J., Li R. L., Lu Z. Y., Duan J. L., Xu W. H., Chen X. P., Fan J. P., 2015. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1. Sci. Rep. 5, e13429.
  • Inoue T., Hiratsuka M., Osaki M., Yamada H., Kishimoto I., Yamaguchi S., Nakano S., Katoh M., Ito H., Oshimura M., 2007. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26, 945-957.
  • Jia G., Su L., Singhal S., Liu X., 2012. Emerging roles of SIRT6 on telomere meintenance, DNA repair, metabolism and mammalian aging. Mol. Cell. Biochem. 364, 345-350.
  • Jimenez-Flores L. M., López-Briones S., Macias-Cervantes M. H., Ramírez-Emiliano J., Perez-Vazquez V., 2014. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19, 8289-8302.
  • Kamelo M. K., Horinek A., Canova N. K., Farghali H., 2016. Comparative effects of Quercetin and SRT1720 against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in rats: biochemical and molecular biological investigations. Eur. Rev. Med. Pharmacol. Sci. 20, 363-371.
  • Kayashima Y., Katayanagi Y., Tanaka K., Fukutomi R., Hiramoto S., Imai S., 2017. Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster. Sci. Rep. 7, e43679.
  • Kumar S., Lombard D. B., 2015. Mitochondrial sirtuins and their relationships with disease and cancer. Antioxid. Redox Signal. 22, 1060-1077.
  • Lafontaine-Lacasse M., Richard D., Picard F., 2010. Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neurosci. Lett. 480, 1-3.
  • Laiglesia L. M., Lorente-Cebrián S., Prieto-Hontoria P. L., Fernández-Galilea M., Ribeiro S. M., Sáinz N., Martínez J. A., Moreno-Aliaga M. J., 2016. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J. Nutr. Biochem. 37, 76-82.
  • Lewinska A., Wnuk M., Grabowska W., Zabek T., Semik E., Sikora E., Bielak-Zmijewska A., 2015. Curcumin induces oxidation-dependent cell cycle arrest mediated by SIRT7 inhibition of rDNA transcription in human aortic smooth muscle cells. Toxicol. Lett. 233, 227-238.
  • Li H., Xu M., Lee J., He C., Xie Z., 2012. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 303, 1234-1244.
  • Li X., 2013. SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. 45, 51-60.
  • Li X., Zhang S., Blander G., Tse J. G., Krieger M., Guarente L., 2007. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91-106.
  • Li X., Lian F., Liu C., Hu K. Q., Wang X. D., 2015. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR-34a/SIRT1 axis in mice. Sci. Rep. 5, e16774.
  • Li Y. P., Wang S. L., Liu B., Tang L., Kuang R. R., Wang X. B., Zhao C., Song X. D., Cao X. M., Wu X., Yang P. Z., Wang L. Z., Chen A. H., 2016. Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol. Sin. 37, 344-353.
  • Lin X. L., Liu M. H., Hu H. J., Feng H. R., Fan X. J., Zou W. W., Pan Y. Q., Hu X. M., Wang Z., 2015. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells. DNA Cell Biol. 34, 561-572.
  • Liu P., Zou D., Yi L., Chen M., Gao Y., Zhou R., Zhang Q., Zhou Y., Zhu J., Chen K., Mi M., 2015. Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway. Restor. Neurol. Neurosci. 33, 143-157.
  • Luo X., Jia R., Yao Q., Xu Y., Luo Z., Luo X., Wang N., 2016. Docosahexaenoic acid attenuates adipose tissue angiogenesis and insulin resistance in high fat diet-fed middle-aged mice via a sirt1-dependent mechanism. Mol. Nutr. Food Res. 60, 871-885.
  • Lv Z. M., Wang Q., Chen Y. H., Wang S. H., Huang D. Q., 2015. Resveratrol attenuates inflammation and oxidative stress in epididymal white adipose tissue: implications for its involvement in improving steroidogenesis in diet-induced obese mice. Mol. Reprod. Dev. 82, 321-326.
  • Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V., 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443-1446.
  • Mastrocola R., Nigro D., Chiazza F., Medana C., Dal Bello F., Boccuzzi G., Collino M., Aragno M., 2016. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic. Biol. Med. 91, 224-235.
  • Michishita E., Park J. Y., Burneskis J. M., Barrett J. C., Horikawa I., 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635.
  • Mitchell S. J., Martin-Montalvo A., Mercken E. M., Palacios H. H., Ward T. M., Abulwerdi G., Minor R. K., Vlasuk G. P., Ellis J. L., Sinclair D. A., Dawson J., Allison D. B., Zhang Y., Becker K. G., Bernier M., de Cabo R., 2014. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836-843.
  • Mukhopadhyay P., Horváth B., Rajesh M., Varga Z. V., Gariani K., Ryu D., Cao Z., Holovac E., Park O., Zhou Z., Xu M. J., Wang W., Godlewski G., Paloczi J., Nemeth B. T., Persidsky Y., Liaudet L., Haskó G., Bai P., Boulares A. H., Auwerx J., Gao B., Pacher P., 2017. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J. Hepatol. 66, 589-600.
  • Noriega L. G., Feige J. N., Canto C., Yamamoto H., Yu J., Herman M. A., Mataki C., Kahn B. B., Auwerx J., 2011. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12, 1069-1076.
  • Orimo M., Minamino T., Miyauchi H., Tateno K., Okada S., Moriya J., Komuro I., 2009. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 29, 889-894.
  • Palmirotta R., Cives M., Della-Morte D., Capuani B., Lauro D., Guadagni F., Silvestris F., 2016. Sirtuins and cancer: role in the epithelial-mesenchymal transition. Oxid. Med. Cell. Longev. 2016,
  • Papadimitriou A., Silva K. C., Peixoto E. B., Borges C. M., Lopes de Faria J. M., Lopes de Faria J. B., 2015. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Renal. Physiol. 308, F209-F225.
  • Park S., Mori R., Shimokawa I., 2013. Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol. Cells 35, 474-480.
  • Pillai J. B., Chen M., Rajamohan S. B., Samant S., Pillai V. B., Gupta M., Gupta M. P., 2008. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am. J. Physiol. Heart Circ. Physiol. 294, H1388-H1397.
  • Portmann S., Fahrner R., Lechleiter A., Keogh A., Overney S., Laemmle A., Mikami K., Montani M., Tschan M. P., Candinas D., Stroka D., 2013. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol. Cancer Ther. 12, 499-508.
  • Quideau S., Deffieux D., Douat-Casassus C., Pouységu L., 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 50, 586-621.
  • Rappou E., Jukarainen S., Rinnankoski-Tuikka R., Kaye S., Heinonen S., Hakkarainen A., Lundbom J., Lundbom N., Saunavaara V., Rissanen A., Virtanen K.A., Pirinen E., Pietilainen K. H., 2016. Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue. J. Clin. Endocrinol. Metab. 101, 1263-12-73.
  • Rebollo A., Roglans N., Baena M., Sánchez R. M., Merlos M., Alegret M., Laguna J. C., 2014. Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim. Biophys. Acta 1841, 514-524.
  • Revollo J. R., Grimm A. A., Imai S., 2004. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754-50763.
  • Sadi G., Ergin V., Yilmaz G., Pektas M. B., Yildirim O. G., Menevse A., Akar F., 2016. High-fructose corn syrup-induced hepatic dysfunction in rats: improving effect of resveratrol. Eur. J. Nutr. 54, 895-904.
  • Sahin K., Pala R., Tuzcu M., Ozdemir O., Orhan C., Sahin N., Juturu V., 2016. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J. Inflamm. Res. 9, 147-154.
  • Sanders B. D., Jackson B., Marmorstein R., 2010. Structural basis for sirtuin function: What we know and what we don't. Biochim. Biophys. Acta 1804, 1604-1616.
  • Smith M. R., Syed A., Lukacsovich T., Purcell J., Barbaro B. A., Worthge S. A., Wei S. R., Pollio G., Magnoni L., Scali C., Massai L., Franceschini D., Camarri M., Gianfriddo M., Diodato E., Thomas R., Gokce O., Tabrizi S.J., Caricasole A., Landwehrmeyer B., Menalled L., Murphy C., Ramboz S., Luthi-Carter R., Westerberg G., Marsh J. L., 2014. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease. Hum. Mol. Genet. 23, 2995-3007.
  • Sun Q., Jia N., Wang W., Jin H., Xu J., Hu H., 2014. Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons. Biochem. Biophys. Res. Commun. 448, 89-94.
  • Tanno M., Sakamoto J., Miura T., Shimamoto K., Horio Y., 2007. Nucleocytoplasmatic shuttling of yhe NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832.
  • Tauriainen E., Luostarinen M., Martonen E., Finckenberg P., Kovalainen M., Huotari A., Herzig K. H., Lecklin A., Mervaala E., 2011. Distinct effects of calorie restriction and resveratrol on diet-induced obesity and fatty liver formation. J. Nutr. Metab. 2011, e525094.
  • Ugur S., Ulu R., Dogukan A., Gurel A., Yigit I. P., Gozel N., Aygen B., Ilhan N., 2015. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail. 37, 332-336.
  • Li M. P., Pérez-Matute P., González-Muniesa P., Prieto-Hontoria P. L., Moreno-Aliaga M. J., Martínez J. A., 2012. Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity 20, 1974-1983.
  • Walker A. K., Yang F., Jiang K., Ji J.-Y., Watts J. L., 2010. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403-1417.
  • Wang Q., Sun X., Li X., Dong X., Li P., Zhao L., 2015. Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol. Med. Rep. 11, 151-158.
  • Wang Y., Lee P. S., Chen Y. F., Ho C. T., Pan M. H., 2016. Suppression of adipogenesis by 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone from orange peel in 3T3-L1 cells. J. Med. Food 19, 830-835.
  • Wu T., Liu Y. H., Fu Y. C., Liu X. M., Zhou X. H., 2014. Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients. Ann. Clin. Lab. Sci. 44, 410-418.
  • Yacoub R., Lee K., He J. C., 2014. The role of SIRT1 in diabetic kidney disease. Front. Endocrinol. 5, e166.
  • Ying H. Z., Liu Y. H., Yu B., Wang Z. Y., Zang J. N., Yu C. H., 2013. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol. 52, 53-60.
  • You W., Rotili D., Li T. M., Kambach C., Meleshin M., Schutkowski M., Chua K. F., Mai A., Steegborn C., 2017. Structural basis of sirtuin 6 activation by synthetic small molecules. Angew. Chem. Int. Ed. Engl. 56, 1007-1011.
  • Yu J., Wu Y., Yang P., 2016. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J. Neurochem. 137, 317-383.
  • Yu W., Zhou H. F., Lin R. B., Fu Y. C., Wang W., 2014. Short-term calorie restriction activates SIRT1-4 and -7 in cardiomyocytes in vivo and in vitro. Mol. Med. Rep. 9, 1218-1224.
  • Zhou L., Xu D. Y., Sha W. G., Shen L., Lu G. Y., Yin X., Wang M. J., 2015. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med. 13, 12967-13015.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.