PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 3 | 343-350
Article title

Związek aktywności transpozonów line z wybranymi chorobami genetycznymi człowieka

Content
Title variants
EN
Activity of line transposons and selected genetic diseases
Languages of publication
PL EN
Abstracts
PL
Sekwencje LINE należą do grupy ruchomych elementów genetycznych w genomach eukariotycznych. Rozprzestrzeniają się w nich według modelu "kopiuj i wklej" za pośrednictwem RNA i odwrotnej transkryptazy. W genomie ludzkim zlokalizowano ponad 500 tys. kopii tych elementów, niemniej nieliczne z nich zachowują swoją aktywność. Jej konsekwencją jest destabilizacja struktury genomu powodująca m.in. zaburzenia ekspresji genów, alternatywnego splicingu czy aktywację alternatywnych promotorów. Transpozycja LINE to proces aktywny głównie we wczesnych stadiach embriogenezy, natomiast w prawidłowych komórkach somatycznych tłumiona jest za pomocą mechanizmów epigenetycznych. Zmiany w poziomie metylacji DNA tych elementów są jednym z głównych wskaźników ich aktywności wiązanej z licznymi chorobami genetycznymi. Najpełniej opisane zostały zależności między aktywnością LINE a różnymi postaciami nowotworów.
EN
LINE transposons (Long Interspersed Nuclear Elements) are mobile, endogenous genetic elements widespread in eukaryotic genomes. Their ability to spread out with help of reverse transcriptase by using RNA intermediates indicates that they belong to autonomous retrotransposons. Original element is transcribed, then RNA undergoes reverse transcription and as a DNA fragment it is inserted into another part of the genome. Despite of the presence of over 500.000 of their copies in the human genome, majority of LINEs became inactive due to structural changes during the process of evolution. Sequences that retained their original function, play an important role in organization and functioning of genomes. Their activity results in destabilization of a genome structure, as a result of de novo insertions of LINEs and changes caused by homologous recombination between them. They can cause changes in the level of gene expression by interfering with alternative splicing (resulting in exon skipping or selecting cryptic splice sites), generating polyadenylation signals or providing alternative promoters. LINE retrotransposition is active mainly during the early stages of embryogenesis. In normal somatic cells this process is silenced by epigenetic mechanisms. Changes in DNA methylation levels of these elements is one of the main indicators of their activity associated with multiple genetic diseases. Correlations between LINE activity and multiple forms of neoplasms are mostly described in this paper.
Journal
Year
Volume
66
Issue
3
Pages
343-350
Physical description
Dates
published
2017
Contributors
  • Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Banacha 12/16 90-237 Łódź, Polska
  • Department of General Genetics, and Plant Molecular Biology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
  • Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Banacha 12/16 90-237 Łódź, Polska
  • Department of General Genetics, and Plant Molecular Biology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
  • Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Banacha 12/16 90-237 Łódź, Polska
  • Department of General Genetics, and Plant Molecular Biology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
References
  • Awano H., Malueka R. G., Yagi M., Okizuka Y., Takeshima Y., Matsuo M., 2010. Contemporary retrotransposition of a novel non-coding gene induces exon-skipping in dystrophin mRNA. J. Hum. Genet. 55, 785-790.
  • Baba Y., Murata A., Watanabe M., Baba H., 2014. Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg. Today. 44, 1807-1816.
  • Barry K. H., Moore L. E., Liao L. M., Huang W. Y., Andreotti G., Poulin M., Berndt S. I., 2015. Prospective study of DNA methylation at LINE-1 and Alu in peripheral blood and the risk of prostate cancer. Prostate 75, 1718-1725.
  • Beck C. R., Garcia-Perez J. L., Badge R. M., Moran J. V., 2011. LINE-1 elements in structural variation and disease. Ann. Rev. Genom. Hum. Genet. 12, 187-215.
  • Bollati V., Galimberti D., Pergoli L., Dalla Valle E., Scarpini E., Bertazzi P. A., Baccarelli A., 2011. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav. Immun. 25, 1078-1083.
  • Brouha B., Schustak J., Badge R. M., Lutz-Prigge S., Farley A. H., Moran J. V., Kazazian H. H., Jr., 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280-5285.
  • Carreira P. E., Richardson S. R., Faulkner G. J., 2014. L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J. 281, 63-73.
  • Chen J., Weiss W. A., 2015. Alternative splicing in cancer: implications for biology and therapy. Oncogene 34, 1-14.
  • Chénais B., 2013. Transposable elements and human cancer: a causal relationship? Biochim. Biophys. Acta 1835, 28-35.
  • Christensen B. C., Houseman E. A., Marsit C. J., Zheng S., Wrensch M. R., Wiemels J. L., Sugarbaker D. J., Kelsey K. T., 2009. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5: e1000602.
  • Dombroski B. A., Mathias S. L., Nanthakumar E., Scott A. F., Kazazian H. H. Jr., 1991. Isolation of an active human transposable element. Science 254, 1805-1808.
  • Ehrlich M., 2002. DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400-5413.
  • Feinberg A. P., Vogelstein B., 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92.
  • Giorgi G., Marcantonio P., Del Re B., 2011. LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res. 346, 383-391.
  • Goodier J. L., 2014. Retrotransposition in tumors and brains. Mobile DNA 5, 11-19.
  • Han K., Lee J., Meyer T. J., Remedios P., Goodwin L., Batzer M. A., 2008. L1 recombination-associated deletions generate human genomic variation. Proc. Natl. Acad. Sci. USA 105, 19366-19371.
  • Ikeda K., Shiraishi K., Eguchi A., Shibata H., Yoshimoto K., Baba Y., Baba H., Suzuki M., 2013. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann. Thorac. Surg. 96, 1790-1794.
  • Iskow R. C., McCabe M. T., Mills R. E., Torene S., Pittard W. S., Neuwald A. F., Devine S. E., 2010. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253-1261.
  • Kaer K., Branovets J., Hallikma A., Nigumann P., Speek M., 2011. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 6, e26099.
  • Kale S. P., Moore L., Deininger P. L., Roy-Engel A. M., 2005. Heavy metals stimulate human LINE-1 retrotransposition. Int. J. Environ. Res. Public Health 2, 14-23.
  • Kazazian H. H. Jr., Wong C., Youssoufian H., Scott A. F., Phillips D. G., Antonarakis S. E., 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanizm for mutation in man. Nature 332, 164-166.
  • Konkel M. K., Batzer M. A., 2010. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20, 211-221.
  • Lane N., Dean W., Erhardt S., Hajkova P., Surani E., Walter J., Reik W., 2003. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88-93.
  • Lou Y. T., Chen C. W., Fan Y. C., Chang W. C., Huang C. W., Wang J. Y., 2015. LINE-1 methylation status correlates significantly to post-therapeutic recurrence in stage III colon cancer patients receiving FOLFOX-4 adjuvant chemotherapy. PLoS One 10, e0123973.
  • Martin S. L., 2010. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol. 7, 706-711.
  • Miki Y., 1998. Retrotransposal integration of mobile genetic elements in human diseases. J. Hum. Genet. 43, 77-84.
  • Miki Y., Nishisho I., Horii A., 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643-645.
  • Mine M., Chen J. M., Brivet M., Desguerre I., Marchant D., de Lonlay P. i współaut., 2007. A large genomie deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum. Mutat. 28, 137-142.
  • Miousse I. R., Koturbash I., 2015. The fine LINE: methylation drawing the cancer landscape. Biomed. Res. Int. 2015, http://dx.doi.org/10.1155/2015/131547.
  • Morisada N., Rendtorff N., Nozu K., Morishita T., Miyakawa T., Matsumoto T., Shirahata A. i współaut., 2010. Branchio-oto-renal syndrome caused by partial EYA1 deletion due to LINE-1 insertion. Pediatr. Nephrol. 25, 1343-1348.
  • Park S. Y., Seo A. N., Jung H. Y., Jung N., Cho N. Y., Kang G. H., 2014. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 9, e100429.
  • Pobsook T., Subbalekha K., Sannikorn P., Mutirang A., 2011. Improved measurement of LINE-1 sequence methylation for cancer detection. Int. J. Clin. Chem. 412, 314-321.
  • Rodić N., Sharma R., Sharma R., Zampella J., Dai L., Taylor M. S., Hruban R. H., Iacobuzio-Donahue C. A. i współaut., 2014. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280-1286.
  • Sakowicz T., Frasiński S., 2015. Retrotranspozony a podatność na choroby nowotworowe. Post. Biol. Kom. 42, 445-464.
  • Sarabi M. M., Naghibalhossaini F., 2015. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem. Funct. 33, 427-433.
  • Schwahn U., Lenzner S., Dong J., Feil S., Hinzmann B., van Duijnhoven G., Pinckers A. J., 1998. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat. Genet. 19, 327-332.
  • Speek M., 2001. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell Biol. 21, 1973-1985.
  • Sunami E., de Maat M., Vu A., Turner R. R., Hoon D. S., 2011. LINE-1 hypomethylation during primary colon cancer progression. PLoS One, 6:e18884.
  • Uribe-Lewis S., Woodfine K., Stojic L., Murrell A., 2011. Molecular mechanisms of genomic imprinting and clinical implications for cancer. Expert Rev. Mol. Med. 13, e2.
  • Van den Hurk J. A., van de Pol D. J., Wissinger B., van Driel M. A., Hoefsloot L. H. i współaut., 2003. Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum. Genet. 113, 268-275.
  • Yang N., Zhang L., Zhang Y., Kazazian H. H. Jr., 2003. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucl. Acids Res. 31, 4929-4940.
  • Zhu Y., Feng F., Yu J., Song B., Hu M., Gao X., Zhang Q ., 2013. L1-ORF1p, a Smad4 interaction protein, promotes proliferation of HepG2 cells and tumorigenesis in mice. DNA Cell Biol. 32, 531-540.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p343kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.