PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 2 | 327-335
Article title

Znaczenie gorączki i endogennej antypirezy. Perspektywa wykorzystania inhibitorów rozpuszczalnej hydrolazy epoksydowej w farmakologii przeciwgorączkowej

Content
Title variants
EN
Physiological importance of fever and endogenous antipyresis. Soluble epoxide hydrolase inhibitiors as potential therapeutic drugs for the treatment of fever
Languages of publication
PL EN
Abstracts
PL
Gorączka towarzyszy ludzkości od początku istnienia naszego gatunku. Będąc jednym z najjaskrawszych przejawów infekcji i choroby, odbierana była dawniej jako zaburzenie, z którym za wszelką cenę należy walczyć. Współcześnie potrafimy jednak w sposób właściwy interpretować ten proces jako korzystną dla organizmu, ściśle regulowaną reakcję obronną. Zagrożenie dla zdrowia stanowią natomiast zaburzenia mechanizmów regulacji temperatury skutkujące zbyt wysoką lub przedłużającą się gorączką. Praktyka kliniczna pokazuje, że w takich przypadkach standardowe metody leczenia z wykorzystaniem aspirynopodobnych (niesteroidowych) środków przeciwzapalnych pozostają zwykle bezskuteczne. Fakt ten dowodzi niezbicie konieczności prowadzenia ciągłych poszukiwań skutecznych metod leczenia. W obszar tych badań wpisują się doświadczenia nad wykorzystaniem inhibitorów rozpuszczalnej hydrolazy epoksydowej (sEH). Rosnąca ilość wyników badań dowodzi, iż mogą stanowić bezpieczną i skuteczną alternatywę dla współcześnie stosowanych leków.
EN
Fever has accompanied humanity throughout the whole history of our species. Being one of the cardinal signs of infection and disease, for decades it has been treated as a disorder, which at all costs had to be cured. Nowadays, however, fever is recognized as an important, beneficial and tightly regulated immune response. A real threat to health became the episodes of especially high or prolonged fever resulting from failure of thermoregulation mechanisms. Clinical experience shows, that in such cases standard treatment with aspirin-like non-steroidal anti-inflammatory drugs usually remains inefficient. This fact clearly proves the need for constant search for novel therapeutic agents. Pharmacological inhibition of soluble epoxide hydrolase (sEH) activity is a part of such studies. The growing number of evidence indicates, that sEH inhibitors might be used as a safe and effective alternative to currently used drugs.
Journal
Year
Volume
66
Issue
2
Pages
327-335
Physical description
Dates
published
2017
Contributors
  • Zakład Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Mikołaja Kopernika w Toruniu, Lwowska 1, 87-100 Toruń, Polska
  • Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
  • Zakład Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Mikołaja Kopernika w Toruniu, Lwowska 1, 87-100 Toruń, Polska
  • Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
  • Zakład Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Mikołaja Kopernika w Toruniu, Lwowska 1, 87-100 Toruń, Polska
  • Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
  • Zakład Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Mikołaja Kopernika w Toruniu, Lwowska 1, 87-100 Toruń, Polska
  • Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
References
  • Aderem A., Ulevitch R. J., 2000. Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.
  • Azzimondi G., Bassein L., Nonino F., Fiorani L., Vignatelli L., Re G., D'alessandro R., 1995. Fever in acute stroke worsens prognosis. A prospective study. Stroke 26, 2040-2043.
  • Blatteis C. M., Sehic E., 1997. Circulating pyrogen signaling of the brain. A new working hypothesis. Ann. N. Y. Acad. Sci. 813, 445-447.
  • Blatteis C. M., Li S., Li Z., Feleder C., Perlik V., 2005. Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediat. 76, 1-18.
  • Bochenek G. 2012. Alergia i nadwrażliwość na niesterydowe leki przeciwzapalne. Alergia Astma Immunol. 17, 57-65.
  • Caputa M. 2010. Termoregulacja, podstawy diagnostyki termicznej i termiatrii. [W:] Fizjologia człowieka. Górski J. (red.). Wydawnictwo Lekarskie PZWL, Warszawa, 280-292.
  • Coelho M. M., Souza G. E., Pelá I. R., 1992. Endotoxin-induced fever is modulated by endogenous glucocorticoids in rats. Am. J. Physiol. 263, 423-427.
  • Czyż M., Watała C., 2005. Aspiryna - cudowne panaceum? Molekularne mechanizmy działania kwasu acetylosalicylowego w organizmie. Postepy Hig. Med. Dosw. 59, 105-115.
  • De Waal Malefyt R., Abrams J., Bennett B., Figdor C. G., De Vries J. E., 1991. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209-1220.
  • Dinarello C. A., 1999. Cytokines as endogenous pyrogens. J. Infect. Dis. 179, 294-304.
  • Dorrance A. M., Rupp N., Pollock D. M., Newman J. W., Hammock B. D., Imig J. D., 2005. An epoxide hydrolase inhibitor, 12-(3-adamantan-1-ylureido) dodecanoic acid (AUDA) reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 46, 842-848.
  • Dubois E. F., 1949. Why are fever temperatures over 106 degrees F rare? Am. J. Med. Sci. 217, 361-368.
  • Fanning J., Neuhoff R. A., Brewer J. E., Castaneda T., Marcotte M. P., Jacobson R. L., 1998. Frequency and yield of postoperative fever evaluation. Infect. Dis. Obstet. Gynecol. 6, 252-255.
  • Gill E. A., Imaizumi T., Carveth H., Topham M. K., Tarbet E. B., Mcintyre T. M., Prescott S. M., Zimmerman G. A., 1998. Bacterial lipopolysaccharide induces endothelial cells to synthesize a degranulating factor for neutrophils. FASEB J. 12, 673-684.
  • Goyert S. M., Ferrero E., Rettig W. J., Yenamandra A. K., Obata F., Le Beau M. M., 1988. The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Science 239, 497-500.
  • Holst O., Ulmer A. J., Brade H., Flad H. D., Rietschel E. T., 1996. Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol. Med. Microbiol. 16, 83-104.
  • Hwang S. H., Wagner K. M., Morisseau C., Liu J. Y., Dong H., Wecksler A. T., Hammock B. D., 2011. Synthesis and structure-activity relationship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J. Med. Chem. 54, 3037-3050.
  • Imig J. D., Hammock B. D., 2009. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug. Discov. 8, 794-805.
  • Imig J. D., Zhao X., Capdevila J. H., Morisseau C., Hammock B. D., 2002. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39, 690-694.
  • Ingraham R. H., Gless R. D., Lo H.Y., 2011. Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions. Curr. Med. Chem. 18, 587-603.
  • Iyer A., Kauter K., Alam M. A., Hwang S. H., Morisseau C., Hammock B. D., Brown L., 2012. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats. Exp. Diabetes Res. 2012, 758614.
  • Jiang Q., Akashi S., Miyake K., Petty H. R., 2000. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 165, 3541-3544.
  • Jung O., Brandes R. P., Kim I. H., Schweda F., Schmidt R., Hammock B. D., Busse R., Fleming I., 2005. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension 45, 759-765.
  • Kielian T. L., Blecha F., 1995. CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology 29, 187-205.
  • Kluger M. J., 1991. Fever: role of pyrogens and cryogens. Physiol. Rev. 71, 93-127.
  • Koeners M. P., Wesseling S., Ulu A., Sepúlveda R. L., Morisseau C., Braam B., Hammock B. D., Joles J. A., 2011. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 300, 691-698.
  • Kozak W., 2009. Geneza gorączki. Biologiczne mechanizmy i praktyka medyczna. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
  • Kozak W., Fraifeld V., 2004. Non-prostaglandin eicosanoids in fever and anapyrexia. Front. Biosci. 9, 3339-3355.
  • Kozak W., Zheng H., Conn C. A., Soszynski D., Van Der Ploeg L. H., Kluger M. J., 1995. Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. Am. J. Physiol. 269, 969-977.
  • Kozak W., Archuleta I., Mayfield K. P., Kozak A., Rudolph K., Kluger M. J., 1998. Inhibitors of alternative pathways of arachidonate metabolism differentially affect fever in mice. Am. J. Physiol. 275, 1031-1040.
  • Kozak W., Kluger M. J., Tesfaigzi J., Kozak A., Mayfield K. P., Wachulec M., Dokladny K., 2000a. Molecular mechanisms of fever and endogenous antipyresis. Ann. N. Y. Acad. Sci.917, 121-134.
  • Kozak W., Kluger M. J., Kozak A., Wachulec M., Dokladny K., 2000b. Role of cytochrome P-450 in endogenous antipyresis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, 455-460.
  • Kozak W., Aronoff D. M., Boutaud O., Kozak A., 2003.11,12-epoxyeicosatrienoic acid attenuates synthesis of prostaglandin E2 in rat monocytes stimulated with lipopolysaccharide. Exp. Biol. Med. 228, 786-794.
  • Kozak W., Wrotek S., Kozak A., 2006. Pyrogenicity of CpG-DNA in mice: role of interleukin-6, cyclooxygenases, and nuclear factor-kappaB. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, 871-880.
  • Leon L. R., 2002. Invited review: cytokine regulation of fever: studies using gene knockout mice. J. Appl. Physiol. 92, 2648-2655.
  • Leon L. R., Kozak W., Kluger M. J., 1998. Role of IL-10 in inflammation. Studies using cytokine knockout mice. Ann. NY Acad. Sci. 856, 69-75.
  • Liu Y., Zhang Y., Schmelzer K., Lee T.S., Fang X., Zhu Y., Spector A. A., Gill S., Morisseau C., Hammock B. D., Shyy J. Y. S., 2005. The anti-inflammatory effect of laminar flow: the role of PPARϒ, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 102, 16747-16752.
  • Luheshi G., Miller A. J., Brouwer S., Dascombe M. J., Rothwell N. J., Hopkins S. J., 1996. Interleukin-1 receptor antagonist inhibits endotoxin fever and systemic interleukin-6 induction in the rat. Am. J. Physiol. 270, 91-95.
  • Luria A., Bettaieb A., Xi Y., Shieh G. J., Liu H. C., Inoue H., Tsai H. J., Imig J. D., Haj F. G., Hammock B. D., 2011. Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. Proc. Natl. Acad. Sci. USA 108, 9038-9043.
  • Manhiani M., Quigley J. E., Knight S. F., Tasoobshirazi S., Moore T., Brands M. W., Hammock B. D., Imig J. D., 2009. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am. J. Physiol. Renal. Physiol. 297, 740-748.
  • Matsuda A., Jacob A., Wu R., Aziz M., Yang W. L., Matsutani T., Suzuki H., Furukawa K., Uchida E., Wang P., 2012. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J. Nippon. Med. Sch. 79, 4-18.
  • McGugan E. A., 2001. Hyperpyrexia in the emergency department. Emerg. Med. 13, 116-120.
  • Międzybrodzki R., 2004. Kierunki poszukiwań i zastosowanie niesteroidowych leków przeciwzapalnych. Postepy. Hig. Med. Dosw. 58, 438-448.
  • Moesby L., Hansen E. W., Christensen J. D., Tommerup L., Nielsen C., 2003. Endospores of B subtilis are pyrogenic and activate Mono Mac 6 cells: importance of the CD14 receptor. Eur. J. Pharm. Sci. 19, 245-251.
  • Morisseau C., Hammock B. D., 2013. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu. Rev. Pharmacol. Toxicol. 53, 37-58.
  • Morisseau C., Goodrow M. H., Dowdy D., Zheng J., Greene J. F., Sanborn J. R., Hammock B. D., 1999. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc. Natl. Acad. Sci. USA 96, 8849-8854.
  • Murphy M. T., Richards D. B., Lipton J. M., 1983. Antipyretic potency of centrally administered alpha-melanocyte stimulating hormone. Science 221, 192-193.
  • Nakashima T., Yoshida Y., Miyata S., Kiyohara T., 2001. Hypothalamic 11,12-epoxyeicosatrienoic acid attenuates fever induced by central interleukin-1beta in the rat. Neurosci. Lett. 310, 141-144.
  • Netea M. G., Kullberg B. J., Van Der Meer J. W., 2000. Circulating cytokines as mediators of fever. Clin. Infect. Dis. 31, 178-184.
  • Niżankowska E., Bestyńska-Krypel A., Bochenek G., Szczeklik A., 1997. Astma aspirynowa - zapobieganie i leczenie. Alergia Astma Immunologia. 2, 147-154.
  • Qiu H., Li N., Liu J. Y., Harris T. R., Hammock B. D., Chiamvimonvat N., 2011. Soluble epoxide hydrolase inhibitors and heart failure. Cardiovasc. Ther. 29, 99-111.
  • Roman R. J., 2002. P-450 Metabolites of Arachidonic Acid in the Control of Cardiovascular Function. Physiol. Rev. 82, 131-185.
  • Rose T. E., Morisseau C., Liu J. Y., Inceoglu B., Jones P. D., Sanborn J. R., Hammock B. D., 2010. 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. J. Med. Chem. 53, 7067-7075.
  • Roth J., 2006. Endogenous antipyretics. Clin. Chim. Acta. 371, 13-24.
  • Ruwe W. D., Naylor A. M., Veale W. L., 1985. Perfusion of vasopressin within the rat brain suppresses prostaglandin E-hyperthermia. Brain. Res. 338, 219-224.
  • Schmelzer K. R., Kubala L., Newman J. W., Kim I. H., Eiserich J. P., Hammock B. D., 2005. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl. Acad. Sci. USA 102, 9772-9777.
  • Shen H. C., Hammock B. D., 2011. Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications. J. Med. Chem. 55, 1789-1808.
  • Shih S. T., Khorram O., Lipton J. M., Mccann S. M., 1986. Central administration of alpha-MSH antiserum augments fever in the rabbit. Am. J. Physiol. 250, 803-806.
  • Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M., 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782.
  • Simopoulos A. P., 2000. Human requirement for N-3 polyunsaturated fatty acids. Poult. Sci. 79, 961-970.
  • Słownik, 2001. Glossary of terms for thermal physiology. Wyd. 3. Revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS Thermal Commission). Jap. J. Physiol. 51, 245-280.
  • Spector A. A., Norris A. W., 2007. Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol. Cell. Physiol. 292, 996-1012.
  • Takeda K., Akira S., 2005. Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14.
  • Tacconelli S., Patrignani P., 2014. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front. Pharmacol. 5, 239.
  • Tavares E., Maldonado R., Ojeda M. L., Miñano F. J., 2005. Circulating inflammatory mediators during start of fever in differential diagnosis of gram-negative and gram-positive infections in leukopenic rats. Clin. Diagn. Lab. Immunol. 12, 1085-1093.
  • Thomson S. J., Askari A., Bishop-Bailey D., 2012. Anti-Inflammatory Effects of Epoxyeicosatrienoic Acids. Int. J. Vasc. Med. 2012, 605101.
  • Tobias P. S., Soldau K., Ulevitch R. J., 1989. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J. Biol. Chem. 264, 10867-10871.
  • Walentynowicz K., Szefer M., Wojtal B., Terlecki P., Wrotek S., Kozak W., 2006. Role of prostaglandins in heme-induced fever. J. Physiol. Pharmacol. 57, 73-82.
  • Wilkinson M. F., Kasting N. W., 1987. The antipyretic effects of centrally administered vasopressin at different ambient temperatures. Brain Res. 415, 275-280.
  • Wrotek S. E., Kozak W., Hess D. C., Fagan S. C., 2011. Treatment of fever after stroke: conflicting evidence. Pharmacotherapy 31, 1085-1091.
  • Yu Z., Xu F., Huse L. M., Morisseau C., Draper A. J., Newman J. W., Parker C., Graham L., Engler M. M., Hammock B. D., Zeldin D. C., Kroetz D. L., 2000. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 87, 992-998.
  • Zhang W., Koerner I. P., Noppens R., Grafe M., Tsai H. J., Morisseau C., Luria A., Hammock B. D., Falck J. R., Alkayed N.J., 2007. Soluble epoxide hydrolase: a novel therapeutic target in stroke. J. Cereb. Blood Flow Metab. 27, 1931-1940.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p327kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.