Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 1 | 31-40

Article title

Prątki niegruźlicze - dlaczego tak trudno leczyć mykobakteriozy?

Content

Title variants

EN
Nontuberculous mycobacteria - why treatment is so difficult?

Languages of publication

PL EN

Abstracts

PL
Zakażenia prątkami niegruźliczymi stanowią w dzisiejszych czasach znaczący problem. Infekcje te dotyczą najczęściej osób z obniżoną odpornością. Atypowe prątki są często przyczyną mykobakteriozy płucnej, ale także pozapłucnej, w przypadkach kiedy infekcja rozwija się w obrębie skóry, tkanek miękkich czy kości. Nowoczesna diagnostyka wykorzystująca narzędzia biologii molekularnej pozwala na szybką identyfikację gatunku MOTT, jednakże wykrycie atypowych prątków nie zawsze świadczy o mykobakteriozie i konieczności terapii, która ze względu na liczne mechanizmy oporności MOTT może okazać się nieskuteczna. Interesującym zjawiskiem jest także zdolność prątków atypowych do tworzenia biofilmów, trójwymiarowych struktur wielokrotnie zmniejszających wrażliwość tych drobnoustrojów na antybiotyki.
EN
Nontuberculous mycobacteria (NTM) is a group of opportunistic species of mycobacteria other than Mycobacterium tuberculosis complex and Mycobacterium leprae, which are widespread in the environment occurring in soil, water and dust. Therefore, it is common to localize them in the respiratory, gastrointestinal tract and skin. In the past two decades, increasing number of infections caused by atypical mycobacteria was reported worldwide. Development of molecular biology and new diagnostic tests enables faster distinction of atypical mycobacteria from Mycobacterium tuberculosis complex and more accurate identification of the species. Most atypical mycobacteria are naturally resistant to antibiotics commonly used for treatment of both mycobacteriosis and tuberculosis. The drug resistance of NTM involves nonspecific mechanisms, which also occur in other bacteria, and specific mechanisms characteristic for mycobacteria only. Resistance can be innate, determined by the bacterial genome, or acquired, as the result of mutational changes.

Journal

Year

Volume

66

Issue

1

Pages

31-40

Physical description

Dates

published
2017

Contributors

  • Pracownia Genetyki i Fizjologii Mycobacterium, Instytut Biologii Medycznej PAN, Lodowa 106, 93-232 Łódź, Polska
  • Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology PAS, Lodowa 106, 93-232 Łódź, Poland
  • Pracownia Genetyki i Fizjologii Mycobacterium, Instytut Biologii Medycznej PAN, Lodowa 106, 93-232 Łódź, Polska
  • Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology PAS, Lodowa 106, 93-232 Łódź, Poland
  • Pracownia Genetyki i Fizjologii Mycobacterium, Instytut Biologii Medycznej PAN, Lodowa 106, 93-232 Łódź, Polska
  • Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology PAS, Lodowa 106, 93-232 Łódź, Poland
  • Pracownia Genetyki i Fizjologii Mycobacterium, Instytut Biologii Medycznej PAN, Lodowa 106, 93-232 Łódź, Polska
  • Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology PAS, Lodowa 106, 93-232 Łódź, Poland

References

  • Adjei M. D., Heinze T. M., Deck J., Freeman J. P., Williams A. J., Sutherland J. B., 2007. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can. J. Microbiol. 53, 144-147.
  • Aung T. T, Yam J. K., Lin S., Salleh S. M., Givskov M., Liu S., Lwin N. C., Yang L., Beuerman R. W., 2016. Biofilms of Pathogenic Nontuberculous Mycobacteria Targeted by New Therapeutic Approaches. Antimicrob. Agents Chemother. 60, 24-35.
  • Bakuła Z., Safianowska A., Nowacka-Mazurek M., Bielecki J., Jagielski T., 2014. Mycobacteriumkansasii: Biologia Patogenu Oraz Cechy Kliniczne i Epidemiologiczne Zakażeń. Post. Mikrobiol. 53, 241-254.
  • Baysarowich J., Koteva K., Hughes D. W., Ejim L., Griffiths E., Zhang K., Junop M., Wright G. D., 2008. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc. Natl. Acad. Sci. USA 105, 4886-4891.
  • Beckler D. R., Elwasila S., Ghobrial G., Valentine J. F., Naser S. A., 2008. Correlation between rpoB gene mutation in Mycobacterium aviumsubspecies paratuberculosisand clinical rifabutin and rifampicin resistance for treatment of Crohn's disease. World J. Gastroenterol. 14, 2723-2730.
  • Behr M. A., Falkinham J. O., 2009. Molecular epidemiology of nontuberculous mycobacteria. Future Microbiol. 4, 1009-1020.
  • Belanger A. E., Besra G. S., Ford M. E., Mikusová K., Belisle J. T., Brennan P. J., Inamine J. M., 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93, 11919-11924.
  • Bhatt K., Banerjee S. K., Chakraborti P. K., 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267, 4028-4032.
  • Brown-Elliott B. A., Nash K. A., Wallace R. J. Jr., 2012. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin.. Microbiol. Rev. 25, 545-582.
  • Brown-Elliott B. A., Vasireddy S., Vasireddy R., Iakhiaeva E., Howard S. T., Nash K., Parodi N., Strong A., Gee M., Smith T., Wallace R. J. Jr., 2015. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J. Clin. Microbiol. 53, 1211-1215.
  • Brzezińska S., Szołkowska M., Langfort R., Zwolska Z., Augustynowicz-Kopeć E., 2015. Wykrywanie prątków Mycobacterium tuberculosis complex w materiałach tkankowych utrwalonych w parafinie. Post. Nauk Med.4, 255-260.
  • Candido P. H.,Nunes Lde S., Marques E. A., Folescu T. W., Coelho F. S., De Moura V. C., Da Silva M. G., Gomes K. M., Lourenco M. C., Aguiar F. S., Chitolina F., Armstrong D. T., Leao S. C., Neves F. P., Mello F. C., Duarte R. S., 2014.Multidrug-resistant nontuberculous mycobacteria isolted cystic fibrosis patients. J. Clin. Microbiol. 52, 2990-2997.
  • Chastellier C., Forquet F., Gordon A., Thilo L., 2009. Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell. Microbiol. 11, 1190-1207.
  • Cowman S., Burns K., Benson S., Wilson R., Loebinger M. R., 2016. The antimicrobial susceptibility of non-tuberculous mycobacteria. J. Infect. 72, 324-331.
  • Danilchanka O., Pavlenok M., Niederweis M., 2008. Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52, 3127-3134.
  • Dey A., Verma A. K., Chatterji D., 2010. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiology 156, 873-883.
  • Doncker A. V, Balabanian K., Bellanné-Chantelot C., De Guibert S., Revest M., Bachelerie F., Lamy T., 2011. Two cases of disseminated Mycobacterium avium infection associated with a new immunodeficiency syndrome related to CXCR4 dysfunctions. Clin. Microbiol. Infect. 17, 135-139.
  • Falkinham J. O., 2002. Nontuberculous mycobacteria in the environment. Clin. Chest Med. 23, 520-551.
  • Falkinham J. O., 2016. Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr. Environ. Health Rep. 3, 161-167.
  • Faria S., Joao I., Jordao L., 2015. General overview on nontuberculous mycobacteria, biofilms, and human infection. J. Pathog. doi: 10.1155/2015/809014.
  • Flores A. R., Parsons L. M., Pavelka M. S. Jr., 2005. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology 151, 521-532.
  • Fol M., Olek J., Kowalewicz-Kulbat M., Druszczyńska M., Rudnicka W., 2011.Prątki nie gruźlicze: M. marinum, M. ulcerans, M. xenopi - krótka charakterystyka drobnoustrojów i zmian klinicznych przez nie wywołanych. Post. Hig. Med. Dosw. 65, 574-583.
  • Gao L. Y., Laval F., Lawson E. H., Groger R. K., Woodruff A., Morisaki J. H., Cox J. S., Daffe M., Brown E. J., 2003. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49, 1547-1563.
  • Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G., Iademarco M. F., Iseman M., Olivier K., Ruoss S., Von Reyn C. F., Wallace R. J. Jr., Winthrop K., 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367-416.
  • Guillemin I., Sougakoff W., Cambau E., Revel-Viravau V., Moreau N., Jarlier V.,1999. Purification and inhibition by quinolones of DNA gyrases from Mycobacterium avium, Mycobacterium smegmatisand Mycobacterium fortuitumbv. peregrinum. Microbiology 145, 2527-2532.
  • Helguera-Repetto A. C., Chacon-Salinas R., Cerna-Cortes J. F., Rivera-Gutierrez S., Ortiz-Navarrete V., Estrada-Garcia R., Gonzalez Y., Merchand J. A., 2014. Differential macrophage response to slow- and fast-growing pathogenic Mycobacteria. BioMed. Res. Internat. doi: 10.1155/2014/916521.
  • Hernández-Garduño E., Elwood R. K., 2010. Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000-2008. Emerg. Infect. Dis. 16, 1047.
  • Hoefsloot W., Van Ingen J., Andrejak C. i współaut., 2013. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples. Eur. Respir. J. 42, 1604-1613.
  • Jain A., Mondal R., Srivastava S., Prasad R., Singh K., Ahuja R. C., 2008. Novel mutations in emb B gene of ethambutol resistant isolates of Mycobacterium tuberculosis: a preliminary report. Indian J. Med. Res. 128, 634-639.
  • Jarzembowski J. A, Young M. B., 2008. Nontuberculous mycobacterial infections. Arch. Pathol. Lab. Med. 132, 1333-1341.
  • Khan K., Wang J., Marras T. K., 2007. Nontuberculous mycobacterial sensitization in the United States: national trends over three decades. Am. J. Respir. Crit. Care Med. 176, 306-313.
  • Kilburn J. O., Kubica G. P., 1968. Reagent-impregnated paper strips for detection of niacin. Am. J. Clin. Pathol. 50, 530-532.
  • Klein J. L., Brown T. J., French G. L.,2001. Rifampin resistance in Mycobacterium kansasiiis associated with rpoBmutations. Antimicrob. Agents Chemother. 45, 3056-3058.
  • Kongpetchsatit O., Phatihattakorn W., Mahakunkijcharoen Y., Eampokalarp B., Boonyasopun J., Ramasoota P.,2006. Mutation in the rpoB gene of the rifampicin resistant M. Aviumcomplex strains from Thailand. SoutheastAsian J. Trop. Med. Public Health 37 (Suppl 3), 165-173.
  • Kumar V. G. S., Urs T. A., Ranganath R. R., 2011. MPT 64 Antigen detection of M. tuberculosis isolates. BMC Res. Notes 4, 79.
  • Kyselková M., Chroňáková A., Volná L., Nĕmec J., Ulmann V., Scharfen J., Elhottová D., 2012. Tetracycline resistance and presence of tetracycline resistance determinants tet(V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates. Microb. Environ. 27, 413-422.
  • Lake M. A., Ambrose L. R., Lipman M. C., Lowe D. M., 2016. 'Why me, why now?' Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med. 14, 53.
  • Li Y., Zeng J., Zhang H., He Z. G., 2010. The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiol. 10, 242.
  • Liu J., Takiff H. E., Nikaido H., 1996. Active efflux of fluoroquinolones in Mycobacterium smegmtis mediated by LfrA, a multidrug efflux pump. J. Bacteriol. 178, 3791-3795.
  • Long K. S., Munck C., Andersen T. M., Schaub M. A., Hobbie S. N., Böttger E. C., Vester B., 2010. Mutations in 23S rRNA at the peptidyl transferase center and their relationship to linezolid binding and cross-resistance. Antimicrob. Agents Chemother. 54, 4705.
  • Louw G. E., Warren R. M., Gey Van Pittius N. C., Mcevoy C. R., Van Helden P. D., Victor T. C., 2009. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 53, 3181-3189.
  • Matsuoka M., Aye K. S., Kyaw K., Tan E. V., Balagon M. V., Saunderson P., Gelber R., Makino M., Nakajima C., Suzuki Y., 2008. A novel method for simple detection of mutations conferring drug resistance in Mycobacterium leprae, based on a DNA microarray, and its applicability in developing countries.J. Med. Microbiol. 57, 1213-1219.
  • Meier A., Kirschner P., Springer B.,Steingrube V. A., Brown B. A., Wallace R. J. Jr., Böttger E. C.,1994. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 38, 381-384.
  • Mirsaeidi M., Farshidpour M., Ebrahimi G., Aliberti S., Falkinham J. O., 2014. Management of nontuberculous mycobacterial infection in the elderly. Eur. J. Intern. Med. 25, 356-363.
  • Musser J. M., Kapur V., Williams D. L., Kreiswirth B. N., Van Soolingen D., Van Embden J. D., 1996. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis. 173, 196-202.
  • Nair J., Rouse D. A., Bai G. H., Morris S. L.,1993. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol. Microbiol. 10, 521-527.
  • Nalepa P., Strach M., Rybak-Bąk M., Siedlar M., 2011. Mykobakterioza płuc wywołana przez M. kasnasii u dwojga rodzeństwa z zaburzeniami produkcji IL-12 i IFN-γ. Zespół wrażliwośći typu Mendla na zakażenie prątkami. Przegląd piśmiennictwa. Pneumonol. Alergol. Pol. 79, 428-436.
  • Nash K. A., Inderlied C. B.,1995. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob. Agents Chemother. 39, 2625-2630.
  • Nash K. A., Brown-Elliott B. A., Wallace R. J. Jr., 2009. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 53, 1367-1376.
  • Nessar R., Reyrat J. M., Murray A., Gicquel B., 2011. Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus. J. Antimicrob. Chemother. 66, 1719-1724.
  • Nguyen L., Chinnapapagari S., Thompson C. J., 2005. FbpA-dependent biosynthesis of trehalosedimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J. Bacteriol. 187, 6603-6611.
  • Nguyen H. T., Wolff K. A., Cartabuke R. H., Ogwang S., Nguyen L., 2010. A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol. Microbiol. 76, 348-364.
  • Obata S., Zwolska Z., Toyota E., Kudo K., Nakamura A., Sawai T., Kuratsuji T., Kirikae T.,2006. Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int. J. Antimicrob. Agents 27, 32-39.
  • Paluch-Oles J., Kozioł-Montewka M., Magrys A., 2009. Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates from Eastern Poland. New Microbiol. 32, 147-152.
  • Pang Y., Brown B. A., Steingrube V. A., Wallace R. J. Jr., Roberts M. C., 1994. Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrob. Agents Chemother. 38, 1408-1412.
  • Pfister P., Jenni S., Poehlsgaard J., Thomas A., Douthwaite S., Ban N., Böttger E. C.,2004. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J. Mol. Biol. 342, 1569-1581.
  • Philalay J. S., Palermo C. O., Hauge K. A., Rustad T. R., Cangelosi G. A., 2004. Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob. Agents Chemother. 48, 3412-3418.
  • Piersimoni C., Scarparo C. 2009. Extrapulmonary Infections Associated with Nontuberculous Mycobacteria in Immunocompetent Persons. Emerg. Infect. Dis. 15, 1351-1358.
  • Prammananan T., Sander P., Brown B. A., Frischkorn K., Onyi G. O., Zhang Y., Böttger E. C., Wallace R. J. Jr.,1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessusand Mycobacterium chelonae. J. Infect. Dis. 177, 1573-1581.
  • Ramón-García S., Ng C., Jensen P. R., Dosanjh M., Burian J., Morris R. P., Folcher M., Eltis L. D., Grzesiek S., Nguyen L., Thompson C. J., 2013. WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. Biol. Chem. 288, 34514-34528.
  • Ren H., Liu J., 2006. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob. Agents Chemother. 50, 250-255.
  • Rocco J. M., Irani V. R., 2011. Mycobacterium avium and modulation of the host macrophage immune mechanisms. Int. J. Tuberc. Lung Dis. 15, 447-452.
  • Rose S. J., Babrak L. M., Bermudez L. E.,2015. Mycobacterium avium possesses extracellular DNA that contributes to biofilm formation, structural integrity and tolerance to antibiotics. PLoS One. 10, e0128772.
  • Rossi-Fedele G., Scott W., Spratt D., Gulabivala K., Roberts A. P., 2006. Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. Oral Microbiol. Immunol. 21, 218-222.
  • Saleeb P., Olivier K. N.,2010. Pulmonary nontuberculous mycobacterial disease: new insights into risk factors for susceptibility, epidemiology, and approaches to management in immunocompetent and immunocompromised pateints.Curr. Infect. Dis. Rep. 12, 198-203.
  • Schluger N. W., 2007. Tuberculosis and nontuberculous mycobacterial infections in older adults. Clin. Chest Med. 28, 773-781.
  • Sousa S., Bandeira M., Carvalho P. A., Duarte A., Jordao L., 2015. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int. J. Mycobacteriol. 4, 36-43.
  • Sreevatsan S.,Pan X., Stockbauer K. E., Williams D. L., Kreiswirth B. N., Musser J. M.,1996. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chemother. 40, 1024-1026.
  • Stallings C. L., Chu L., Li L. X., Glickman M. S.,2011. Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferaseArr in the mycobacterial DNA damage response. PLoS One 6, e21807.
  • Tanaka E., Kimoto T., Matsumoto H., Tsuyuguchi K., Suzuki K., Nagai S., Shimadzu M., Ishibatake H., Murayama T., Amitani R., 2000. Familial pulmonary Mycobacterium avium complex disease. Am. J. Respir. Crit. Care Med. 161, 1643-1647.
  • Van Ingen J., 2013 Diagnosis of nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 34, 103-109.
  • Van Ingen J., Boeree M. J., Van Soolingen D., Mouton J. W., 2012. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat. 15, 149-161.
  • Wilińska E., Szturmowicz M., 2010. Mikobakteriozy płuc - obraz kliniczny, diagnostyka i leczenie. Pneumonol. Alergol. Pol. 78, 138-147
  • Wiseman B., Carpena X., Feliz M., Donald L. J., Pons M., Fita I., Loewen P. C., 2010. Isonicotinic acid hydrazide conversion to Isonicotinyl-NAD by catalase-peroxidases. J. Biol. Chem. 285, 26662-26673.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.