Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 2 | 285-295

Article title

Charakterystyka zmian metabolicznych zachodzących w procesie starzenia się tkanki tłuszczowej

Authors

Content

Title variants

EN
The characteristics of metabolic changes in adipose tissue aging

Languages of publication

PL EN

Abstracts

PL
Wraz z wiekiem wiele procesów fizjologicznych i metabolicznych zmienia się. Efektem tych zmian mogą być powstające zaburzenia w funkcjonowaniu tkanek i narządów, co w konsekwencji może prowadzić do zapoczątkowania procesów starzenia. Zaobserwowano, że w podczas starzenia się rozmieszczenie i właściwości tkanki tłuszczowej ulegają zmianom. Zmniejsza się ilość podskórnej tkanki tłuszczowej oraz obserwuje się wzrost tendencji do odkładania tłuszczu trzewnego, którego nadmiar może stanowić czynnik ryzyka rozwoju chorób metabolicznych. W starzejących się adipocytach dochodzi do zmian w rozmieszczeniu receptorów, co może mieć również związek z obniżeniem wrażliwości na działanie hormonów, ponadto obserwuje się zmiany w ekspresji genów, długości telomerów i aktywności enzymów uczestniczących w metabolizmie lipidów. Aktywność wydzielnicza tkanki tłuszczowej zmienia się z wiekiem, ponadto podczas starzenia dochodzi do rozwoju wielu zaburzeń w metabolizmie komórek tłuszczowych. Całokształt zmian prowadzi do obniżenia wydajności metabolicznej komórek i całej tkanki, co może mieć ogromny wpływ na stan zdrowia i pozostawać w związku z rozwojem chorób metabolicznych oraz chorób związanych z wiekiem.
EN
With the increasing age of organisms there are observed numerous changes in their metabolic and physiological processes. These changes may affect functioning of various tissues and organs, leading in consequence to initiation of aging process. Aging process is also taking place in adipose tissue and is characterized by changes in fat distribution. There is observed a decrease in subcutaneous adipose tissue mass while that of visceral fat increases and may contribute to development of metabolic syndrome. In aging adipocytes there were observed alteration in receptor distribution, changes in telomere length, gene expression profile and enzyme's activity. The secretory activity of adipose tissue alters during aging. All these changes lead to reduction of the metabolic capacity of adipocytes and of the whole tissue, which may exert a significant impact on the health and may be associated with development of the age-related and metabolic diseases.

Journal

Year

Volume

66

Issue

2

Pages

285-295

Physical description

Dates

published
2017

Contributors

  • Uniwersytet Przyrodniczy w Poznaniu, Wydział Medycyny Weterynaryjnej i Nauk o Zwierzętach, Katedra Fizjologii i Biochemii Zwierząt, Wołyńska 35, 60-637 Poznań, Polska
  • Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Animal Physiology and Biochemistry, Wolynska 35, 60-637 Poznan, Poland

References

  • Arner P., 2005. Human fat cell lipolysis: biochemistry regulation and clinical role. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 471-482.
  • Arner P., Langin D., 2014. Lipolysis in lipid turnover cancer cachexia and obesity-induced insulin resistance. Trends Endocrinol. Metab. 25, 255-262.
  • Auguet T., Quintero Y., Riesco D., Morancho B., Terra X., Crescenti, A., Broch M., Aguilar C., Olona M., Porras J. A., 2011. New adipokines vaspin and omentin. Circulating levels and gene expression in adipose tissue from morbidly obese women. BMC Med. Genet. 12, 60.
  • Barzilai N., Huffman D. M., Muzumdar R. H., Bartke A., 2012. The critical role of metabolic pathways in aging. Diabetes 61, 1315-1322.
  • Bjørndal B., Burri L., Staalesen V., Skorve J., Berge R. K., 2011. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes. doi: 10.1155/2011/490650.
  • Bozaoglu K., Curran J. E., Stocker C. J., Zaibi M. S., Segal D., Konstantopoulos N., Morrison S., Carless M., Dyer T. D., Cole, S. A., 2010. Chemerin, a novel adipokine in the regulation of angiogenesis. J. Clin. Endocrinol. Metab. 95, 2476-2485.
  • Cinti S., 2015. The adipose organ: Implications for prevention and treatment of obesity. [W:] The ECOG's eBook on child and adolescent obesity. FrelutM. L. (red.)., http://ebook.ecog-obesity.eu/chapter-biology/adipose-organ-implications-prevention-treatment-obesity/.
  • Daniali L., Benetos A., Susser E., Kark J. D., Labat C., Kimura M., Desai K. K., Granick M., Aviv A., 2013. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Comm. 4, 1597.
  • Daviaud D., Boucher J., Gesta S., Dray C., Guigne C., Quilliot D., Ayav, A., Ziegler O., Carpene C., Saulnier-Blache J. S., 2006. TNFα up-regulates apelin expression in human and mouse adipose tissue. FASEB J. 20, 1528-1530.
  • Dax E. M., Partilla J. S., Gregerman R. I., 1981. Mechanism of the age-related decrease of epinephrine-stimulated lipolysis in isolated rat adipocytes: beta-adrenergic receptor binding adenylate cyclase activity and cyclic AMP accumulation. J. Lipid Res. 22, 934-943.
  • Di Raimo T., Azzara G., Corsi M., Cipollone D., Vasco V. R. L., Businaro R., 2015. Adipokines and their involvement as a target of new drugs. J. Pharmacovigil. 3, 166.
  • Einstein F. H., Atzmon G., Yang X. M., Ma X. H., Rincon M., Rudin E Muzumdar R., Barzilai N., 2005. Differential responses of visceral and subcutaneous fat depots to nutrients. Diabetes 54, 672-678.
  • El Bouazzaoui F., Henneman P., Thijssen P., Visser A., Koning F., Lips M., Janssen I., Pijl H., Van Dijk K. W., Van Harmelen V., 2014. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women. Int. J. Obes. 38, 746-749.
  • Escrivá F., Gavete M. L., Fermín Y., Pérez C., Gallardo N., Alvarez C., Andrés A., Ros M., Carrascosa J. M., 2007. Effect of age and moderate food restriction on insulin sensitivity in Wistar rats: role of adiposity. J. Endocrinol. 194, 131-141.
  • Fain J. N., Madan A. K., Hiler M. L., Cheema P., Bahouth S. W., 2004. Comparison of the release of adipokines by adipose tissue adipose tissue matrix and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273-2282.
  • Gabriely. I., Ma X. H., Yang X. M., Rossetti L., Barzilai N., 2002. Leptin resistance during aging is independent of fat mass. Diabetes 51,1016-1021.
  • Gettys T. W., Rohlfs E. M., Prpic V., Daniel K. W.,Taylor I., Collins S., 1995. Age-dependent changes in beta-adrenergic receptor subtypes and adenylyl cyclase activation in adipocytes from Fischer 344 rats. Endocrinology 136, 2022-2032.
  • Giordano A., Smorlesi A., Frontini A., Barbatelli G., Cinti S., 2014. White brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur. J. Endocrinol. 170, 159-171.
  • Giudicelli Y., Pecquery R., 1978. β-Adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat fat-cell membranes: Influence of growth cell size and aging. Eur. J. Biochem. 90, 413-419.
  • Glass D., Viñuela A., Davies M. N., Ramasamy A., Parts L., Knowles D., Brown A. A., Hedman A. K., Small K. S., Buil A., 2013. Gene expression changes with age in skin adipose tissue blood and brain. Genome Biol. 14, R75.
  • Graja A., Schulz T. J., 2015. Mechanisms of aging-related impairment of brown adipocyte development and function. Gerontology 61, 211-217.
  • Granneman J. G., Moore H. Ph., Krishnamoorthy R., Rathod M., 2009. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 284, 34538-34544.
  • Green A,. Gasic S., Milligan G., Dobias S. B., 1995. Increased concentrations of proteins Gi1 and Gi2 in adipocytes from aged rats alter the sensitivity of adenylyl cyclase to inhibitory and stimulatory agonists. Metabolism 44, 239-244.
  • Gulcelik N,. Halil M., Ariogul S., Usman A., 2013. Adipocytokines and aging: adiponectin and leptin. Minerva Endocrinol. 38, 203-210.
  • Gürsoy G., Kirnap N., Eşbah O., Acar Y., Demirbaş B., Akçayöz S., Öztürk A., 2010. The relationship between plasma omentin-1 levels and insulin resistance in newly diagnosed type 2 diabetıc women. Clin. Rev. Opi. 2, 49-54.
  • Gwóźdź K., Szkudelski T., Szkudelska K., 2016. Characteristics of metabolic changes in adipocytes of growing rats. Biochimie 125, 195-203.
  • Hida K., Wada J., Eguchi J., Zhang H., Baba M., Seida A., Hashimoto I., Okada T., Yasuhara A., Nakatsuka A., 2005. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA 102, 10610-10615.
  • Hoffman B. B., Chang H., Farahbakhsh Z. T., Reaven G. M., 1984. Age-related decrement in hormone-stimulated lipolysis. Am. J. Physiol. Endocrinol. Metab. 247, 772-777.
  • Huffman D. M., Barzilai N., 2009. Role of visceral adipose tissue in aging. Biochim. Biophys. Acta 1790, 1117-1123.
  • Huffman D. M., Farias Quipildor G., Mao K., Zhang X., Wan J., Apontes P., Cohen P., Barzilai N., 2016. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 15, 181-186.
  • Ibrahim M. M., 2010. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11-18.
  • Imbeault P., Prud'homme D., Tremblay A., Després J. P., Mauriege P., 2000. Adipose tissue metabolism in young and middle-aged men after control for total body fatness. J. Clin. Endocrinol. Metab. 85, 2455-2462.
  • Kamel A. F., Norgren S., Strigård K., Thörne A., Fakhrai-Rad H., Galli J., Marcus C., 2004. Age-dependent regulation of lipogenesis in human and rat adipocytes. J. Clin. Endocrinol. Metab 89, 4601-4606.
  • Kocelak P., Olszanecka-Glinianowicz M., Owczarek A., Bożentowicz-Wikarek M., Brzozowska A., Mossakowska M., Zdrojewski T., Grodzicki T., Więcek A., Chudek J., 2015. Plasma visfatin/nicotinamide phosphoribosyltransferase levels in hypertensive elderly-results from the PolSenior substudy. J. Am. Soc. Hypertens. 9, 1-8.
  • Krskova K., Filipcik P., Zilka N., Olszanecki R., Korbut R., Gajdosechova L., Zorad S., 2011. Angiotensinogen and angiotensin-converting enzyme mRNA decrease and AT1 receptor mRNA and protein increase in epididymal fat tissue accompany age-induced elevation of adiposity and reductions in expression of GLUT4 and peroxisome proliferator-activated receptor PPARγ. J. Physiol. Pharmacol. 62, 403-410.
  • Kunjara S., Greenbaum A. L., Rademacher T. W., Mclean P., 2010. Age-related changes in the response of rat adipocytes to insulin: evidence for a critical role for inositol phosphoglycans and cAMP. Biogerontology 11, 483-493.
  • Kwon Y., Kim J., Lee C. Y., Kim H., 2015. Expression of SIRT1 and SIRT3 varies according to age in mice. Anat. Cell Biol. 48, 54-61.
  • Lafontan M., Berlan M., 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057-1091.
  • Lakowa N., Trieu N., Flehmig G., Lohmann T., Schön M. R., Dietrich A., Zeplin P. H., Langer S., Stumvoll M., Blüher M., 2015. Telomere length differences between subcutaneous and visceral adipose tissue in humans. Biochem. Biophys. Res. Comm. 457, 426-432.
  • Li J., Houseknecht K. L., Stenbit A. E., Katz E. B., Charron M. J., 2000. Reduced glucose uptake precedes insulin signaling defects in adipocytes from heterozygous GLUT4 knockout mice. FASEB J. 14, 1117-1125.
  • Linford N. J., Beyer R. P., Gollahon K., Krajcik R. A., Malloy V. L., Demas V., Burmer G. C., Rabinovitch P. S., 2007. Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell 6, 673-688.
  • Liu L. F., Shen W. J., Ueno M., Patel S., Kraemer F. B., 2011. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12, 212.
  • Lönnqvist F., Nyberg B., Wahrenberg H., Arner P., 1990. Catecholamine-induced lipolysis in adipose tissue of the elderly. J. Clin. Invest. 85, 1614-1621.
  • MacIntosh C. G., Andrews J. M., Jones K. L., Wishart J. M., Morris H. A., Jansen J. B., Morley J. E., Horowitz M., Chapman I. M., 1999. Effects of age on concentrations of plasma cholecystokinin glucagon-like peptide 1 and peptide YY and their relation to appetite and pyloric motility. Am. J. Clin. Nutr. 69, 999-1006.
  • Mennes E., Dungan C. M., Frendo-Cumbo S., Williamson D. L., Wright D. C., 2013. Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1060-1068.
  • Minamino T., Orimo M., Shimizu I., Kunieda T., Yokoyama M., Ito T., Nojima A., Nabetani A., Oike Y., Matsubara H., 2009. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082-1087.
  • Monickaraj F., Gokulakrishnan K., Prabu P., Sathishkumar C., Anjana R. M., Rajkumar J. S., Mohan V., Balasubramanyam M., 2012. Convergence of adipocyte hypertrophy telomere shortening and hypoadiponectinemia in obese subjects and in patients with type 2 diabetes. Clin. Biochem. 45, 1432-1438.
  • Moreno-Navarrete J., Ortega F., Sabater M., Ricart W., Fernandez-Real J., 2010. Telomere length of subcutaneous adipose tissue cells is shorter in obese and formerly obese subjects. Int. J. Obes. 34, 1345-1348.
  • Morton G., Cummings D., Baskin D., Barsh G., Schwartz M., 2006. Central nervous system control of food intake and body weight. Nature 443, 289-295.
  • Motoshima H., Wu X., Sinha M. K., Hardy V. E., Rosato E. L., Barbot D. J., Rosato F. E., Goldstein B. J., 2002. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J. Clin. Endocrinol. Metab. 87, 5662-5667.
  • Nogalska A., Pankiewicz A., Goyke E., Swierczynski J., 2003. The age-related inverse relationship between ob and lipogenic enzymes genes expression in rat white adipose tissue. Exp. Gerontol. 38, 415-422.
  • Olszanecka-Glinianowicz M., Owczarek A., Bożentowicz-Wikarek M., Brzozowska A., Mossakowska M., Zdrojewski T., Grodzicki T., Więcek A., Chudek J., 2014. Relationship between circulating visfatin/NAMPT nutritional status and insulin resistance in an elderly population-results from the PolSenior substudy. Metabolism 63, 1409-1418.
  • Pedersen M., Bruunsgaard H., Weis N., Hendel H. W., Andreassen B. U., Eldrup E., Dela F., Pedersen B. K., 2003. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech. Ageing Dev. 124, 495-502.
  • Perino A., Ghigo A., Ferrero E., Morello F., Santuli G., 2011. Integratic cardiac PIP3 cAMP signalling through a PKA anchoring function of p 100γ. Mol. Cell 42, 84-95.
  • Rondinone C. M., Carvalho E., Rahn T., Manganiello V. C., Degerman E., Smith U. P., 2000. Phosphorylation of PDE3B by phosphatidylinositol 3-kinase associated with the insulin receptor. J. Biol. Chem. 275, 10093-10098.
  • Serrano R., Villar M., Martinez C., Carrascosa J., Gallardo N., Andres A., 2005. Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. J. Mol. Endocrinol. 34, 153-161.
  • Shih S. R., Tseng C. H., 2009. The effects of aging on glucose metabolism. Taiwan Geriatr. Gerontol. 4, 27-38.
  • Shum M., Pinard S., Guimond M. O., Labbé S., Roberge C., Baillargeon J. P., Langlois M. F., Alterman M., Wallinder C., Hallberg A., 2013. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am. J. Physiol. Endocrinol. Metab. 304, 197-210.
  • Sikora E., 2014. Starzenie i długowieczność. Post. Biochem. 60, 125-137.
  • Skurk T., Alberti-Huber C., Herder C., Hauner H., 2007. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023-1033.
  • Slutsky N., Vaterescu M., Haim Y., Goldstein N., Kirshtein B., Harman-Boehm I., Gepner Y., Shai I., Bashan N., Blüher M., 2016. Decreased adiponectin links elevated adipose tissue autophagy with adipocyte endocrine dysfunction in obesity. Int. J. Obes. doi:10.1038/ijo.2016.5
  • Stephens J., M. Lee J., Pilch P. F., 1997. Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem. 272, 971-976.
  • Stout M. B., Tchkonia T., Pirtskhalava T., Palmer A. K., List E. O., Berryman D. E., Lubbers E. R., Escande C., Spong A., Masternak M. M., 2014. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging 6, 575-586.
  • Tavernier G., Barbe P., Galitzky J., Berlan M., Caput D., Lafontan M., Langin D., 1996. Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. J. Lipid Res. 37, 87-97.
  • Unger R. H., 2003. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144, 5159-5165.
  • Van Harmelen V., Lönnqvist F., Thörne A., Wennlund A., Large V., Reynisdottir S., Arner P., 1997. Noradrenaline-induced lipolysis in isolated mesenteric omental and subcutaneous adipocytes from obese subjects. Int. J. Obes. Relat. Metab. Disord. 21, 972-979.
  • Wang S., Soni K. G., Semache M., Casavant S., Fortier M., Pan L., Mitchell G. A., 2008. Lipolysis and the integrated physiology of lipid energy metabolism. Mol. Genet. Metab. 95, 117-126.
  • Watanabe M., Hayasaki H., Tamayama T., Shimada M., 1998. Histologic distribution of insulin and glucagon receptors. Braz. J. Med. Biol. Res. 31, 243-256.
  • Wehrli N. E., Bural G., Houseni M., Alkhawaldeh K., Alavi A., Torigian D. A., 2007. Determination of age-related changes in structure and function of skin adipose tissue and skeletal muscle with computed tomography magnetic resonance imaging and positron emission tomography. Semin. Nucl. Med. 37, 195-205.
  • Wrońska A., Sledzinski T., Goyke E., Lawniczak A., Wierzbicki P., Kmiec Z., 2014. Short-term calorie restriction and refeeding differently affect lipogenic enzymes in major white adipose tissue depots of young and old rats. J. Physiol. Pharmacol. 65, 117-126.
  • Wu D., Ren Z., Pae M., Guo W., Cui X., Merrill A. H., Meydani S. N., 2007. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J. Immunol. 179, 4829-4839.
  • Wu X., Motoshima H., Mahadev K., Stalker T. J., Scalia R., Goldstein B. J., 2003. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355-1363.
  • Xu A., Chan K. W., Hoo R. L., Wang Y., Tan K. C., Zhang J., Chen B., Lam M. C., Tse C., Cooper G. J., 2005. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem. 280, 18073-18080.
  • Zhu M., Lee G. D., Ding L., Hu J., Qiu G., De Cabo R., Bernier M., Ingram D. K., Zou S., 2007. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp. Gerontol. 42, 733-744.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p285kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.