Preferences help
enabled [disable] Abstract
Number of results
2017 | 66 | 2 | 253-259
Article title

Morfologia kontra molekuły - o konflikcie pomiędzy hipotezami filogenetycznymi na przykładzie łuskonośnych

Title variants
Morphology versus molecules - on the conflict between phylogenetic hypotheses in squamate reptiles
Languages of publication
Łuskonośne to jedna z największych grup współczesnych kręgowców. Przez wiele lat jej systematyka wydawała się dobrze ustalona, jednak zaawansowane badania molekularne prowadzone w XXI wieku sugerują zupełnie odmienny jej obraz. Tradycyjne dane morfologiczne wskazują, że łuskonośne obejmują dwie główne grupy - Iguania i Scleroglossa. Z kolei według badań molekularnych Iguania są zagnieżdżone głęboko wewnątrz Scleroglossa i blisko spokrewnione z zupełnie odmiennymi morfologicznie waranami, padalcami, czy wężami. Wskazywałoby to na ogromną konwergencję w morfologii lub sekwencjach genów pomiędzy różnymi grupami łuskonośnych i ich krewnych.
Squamates are one of the largest groups of extant vertebrates. For many years, their systematics seemed to be well established, yet comprehensive molecular genetics analyses conducted in the XXI century suggest completely different picture of the squamate phylogeny. Traditional morphological data suggest that squamates comprise two main groups - iguanians and scleroglossans. However, molecular data imply that iguanians are deeply nested within Scleroglossa and most closely related to squamates of strikingly different morphology such as monitor lizards, slow worms and snakes. This would suggest a huge amount of convergence either in morphology or gene sequences between many groups of squamates and their closest relatives.
Physical description
  • Uniwersytet Wrocławski, Wydział Nauk Biologicznych, Zakład Biologii Ewolucyjnej i Ochrony Kręgowców, Sienkiewicza 21, 50-335 Wrocław, Polska
  • Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
  • Uniwersytet Śląski w Katowicach, Wydział Biologii i Ochrony Środowiska, Katedra Histologii i Embriologii Zwierząt, Bankowa 9, 40-007 Katowice, Polska
  • Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
  • Assis L. C. S., Rieppel O., 2011. Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics 27, 94-102.
  • Bellairs A. D., Boyd J. D., 1950. The lachrymal apparatus in lizards and snakes. II. The anterior part of the lachrymal duct and its relationship with the palate and with the nasal and vomeronasal organs. Proc. Zool. Soc. Lond. 120, 269-310.
  • Brochu C. A., 2003. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31, 357-397.
  • Caldwell M. W., Nydam R. L., Palci A., Apesteguía S., 2015. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nat. Commun. 6, 5996.
  • Camp C. L., 1923. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48, 289-481.
  • Conrad J. L., 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull. Am. Mus. Nat. Hist. 310, 1-182.
  • Conrad J. L., Ast J. C., Montanari S., Norell M. A., 2011. A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics 27, 230-277.
  • Dabert J., 2009. Ecdysozoa. [W:] Zoologia. Tom 1. Błaszak C. (red.). Wydawnictwo Naukowe PWN, Warszawa, 14-21.
  • Daza J. D., Stanley E. L., Wagner P., Bauer A. M., Grimaldi D. A., 2016. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci. Adv. 2, e1501080.
  • Estes R., de Queiroz K., Gauthier J., 1988. Phylogenetic relationships within Squamata. [W:] Phylogenetic relationships of the lizard families: essays commemorating Charles L. Camp. Estes R., Pregill G. K. (red.). Stanford University Press, Stanford, 119-281.
  • Evans S. E., 2008. The skull of lizards and tuatara. [W:] Biology of the Reptilia. 20. Morphology H. The skull of the Lepidosauria. Gans C., Gaunt A., Adler K. (red.). Society for the Study of Amphibians and Reptiles, Ithaca, New York, 1-347.
  • Filoramo N. I., Schwenk K., 2009. The mechanism of chemical delivery to the vomeronasal organs in squamate reptiles: A comparative morphological approach. J. Exp. Zool. A: Ecol. Genet. Physiol. 311, 20-34.
  • Fry B. G., Vidal N., Norman J. A., Vonk F. J., Scheib H., Ramjan S. F. R., Kuruppu S., Fung K., Hedges S. B., Richardson M. K., Hodgson W. C., Ignjatovic V., Summerhayes R., Kochva E., 2006. Early evolution of the venom system in lizards and snakes. Nature 439, 584-588.
  • Fry B. G., Casewell N. R., Wüster W., Vidal N., Young B., Jackson T. N., 2012. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 60, 434-448.
  • Gauthier J. A., Kearney M., Maisano J. A., Rieppel O., Behlke A. D. B., 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bull. Peabody Mus. Nat. Hist. 53, 3-308.
  • Harrington S. M., Leavitt D. H., Reeder T. W., 2016. Squamate phylogenetics, molecular branch lengths, and molecular apomorphies: a response to McMahan et al. Copeia 104, 702-707.
  • Joyce W. G., 2015. The origin of turtles: a paleontological perspective. J. Exp. Zool. B: Mol. Dev. Evol. 324, 181-193.
  • Losos J. B., Hillis D. M., Greene H. W., 2012. Who speaks with a forked tongue? Science 338, 1428-1429.
  • McMahan C. D., Freeborn L. R., Wheeler W. C., Crother B. I., 2015. Forked tongues revisited: molecular apomorphies support morphological hypotheses of squamate evolution. Copeia 103, 530-535.
  • Parsons T. S., 1959. Studies on the comparative embryology of the reptilian nose. Bull. Mus. Comp. Zool. 120, 101-277.
  • Pianka E. R., Vitt L. J., 2003. Lizards: Windows to the evolution of diversity. Univ. of California Press, Berkeley.
  • Pyron R. A., Burbrink F. T., Wiens J. J., 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93.
  • Reeder T. W., Townsend T. M., Mulcahy D. G., Noonan B. P., Wood P. L. Jr., Sites J. W. Jr., Wiens J. J., 2015. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS One 10, e0118199.
  • Reyes-Velasco J., Card D. C., Andrew A. L., Shaney K. J., Adams R. H, Schield D. R., Casewell N. R., Mackessy S. P., Castoe T. A., 2015. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol. Biol. Evol. 32, 173-183.
  • Schwenk K., 1986. Morphology of the tongue in the tuatara, Sphenodon punctatus, with comments on function and phylogeny. J. Morphol. 188, 129-156.
  • Schwenk K., 1988. Comparative morphology of the lepidosaur tongue and its relevance to squamate phylogeny. [W:] Phylogenetic relationships of the lizard families: essays commemorating Charles L. Camp. Estes R., Pregill G. K. (red.). Stanford University Press, Stanford, 569-598.
  • Schwenk K., 1993. The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain Behav. Evol. 41, 124-137.
  • Schwenk K., 1994. Why snakes have forked tongues. Science 263, 1573-1577.
  • Simões T. R., Wilner E., Caldwell M. W., Weinschütz L. C., Kellner A. W. A., 2015. A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. Nat. Commun. 6, 8149.
  • Simões T. R., Caldwell M. W., Palci A., Nydam R. L., 2017. Giant taxon-character matrices: quality of character constructions remains critical regardless of size. Cladistics 33, 198-219.
  • Tałanda M., 2016. Cretaceous roots of the amphisbaenian lizards. Zool. Scr. 45, 1-8.
  • Townsend T. M., Larson A., Louis E., Macey J. R., 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735-757.
  • Vidal N., Hedges S. B., 2005. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C. R. Biol. 328, 1000-1008.
  • Vidal N., Hedges S. B., 2009. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C. R. Biol. 332, 129-139.
  • Vitt L. J., Pianka E. R., 2005. Deep history impacts present-day ecology and biodiversity. Proc. Natl. Acad. Sci. USA 102, 7877-7881.
  • Wiens J. J., 2008. Systematics and herpetology in the age of genomics. BioScience 58, 297-307.
  • Wiens J. J., Kuczynski C. A., Townsend T., Reeder T. W., Mulcahy D. G., Sites J. W. Jr., 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst. Biol. 59, 674-688.
  • Wiens J. J., Hutter C. R., Mulcahy D. G., Noonan B. P., Townsend T. M., Sites J. W. Jr., Reeder T. W., 2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 8, 1043-1046.
  • Young B. A., 1990. Is there a direct link between the ophidian tongue and Jacobson's organ? Amphibia-Reptilia 11, 263-276.
  • Zheng Y., Wiens J. J., 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537-547.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.