Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 2 | 241-252

Article title

Wybrane zagadnienia z życia igliczniowatych (Syngnathidae) -ryb o niezwykłym rozrodzie

Content

Title variants

EN
Selected issues from the life-history of Syngnathidae family – a fish with extraordinary reproduction

Languages of publication

PL EN

Abstracts

PL
Rodzina igliczniowatych (Syngnathidae) należąca do gromady promieniopłetwych (Actinopterygii), obejmuje koniki morskie oraz iglicznie. Zalicza się do niej 298 gatunków. Większość przedstawicieli tej rodziny żyje w pobliżu wybrzeży prawie wszystkich kontynentów, w płytkich wodach raf koralowych oraz na obszarach łąk morskich. Ryby z rodziny igliczniowatych charakteryzuje wydłużone ciało pokryte pancerzem z płytek kostnych, zakończone długim, rurkowatym pyskiem, który umożliwia wydajne zasysanie pokarmu. Płetwa ogonowa może przyjmować różnorodne kształty, przy czym u koników morskich posiada zdolności chwytne. Bardzo ciekawym oraz szeroko badanym aspektem biologii igliczniowatych jest ich rozród. Występuje tu zjawisko zwane samczą żyworodnością, tzn. samiec inkubuje zarodki w swojej torbie lęgowej. W związku z tym większość gatunków wykazuje odwrócenie ról płciowych, gdzie samice współzawodniczą i zabiegają o samce. Niniejsze opracowanie ma na celu przedstawienie wybranych zagadnień dotyczących pochodzenia, występowania, budowy, rozrodu oraz odżywiania ryb z rodziny igliczniowatych.
EN
Syngnathidae belong to the Actinopterygii class. This family includes pipefishes, seehorses and seadragons. In Syngnathidae, there are distinguishable 298 species. Most of the family members live near the coasts of almost all continents in the shallow waters of coral reefs and seagrass areas. Fishes from Syngnathidae family are characterized by an elongated body covered with bony rings which form a kind of an armor. The elongated snout allows for efficient food suction. Caudal fin takes various shapes and is prehensile in the seahorses. Syngnathidae reproduction is an very interesting and widely studied aspect of their life. There occurs a phenomenon known as male viviparousness. Males incubate embryos in their brood pouch. Consequently, most of the Syngnathidae species exhibit a reversal of sex roles, which means that females are seeking and competing for males. The aim of this review is to present selected issues concerning origin, existence, anatomy, breeding and feeding of fishes from the Syngnathidae family.

Journal

Year

Volume

66

Issue

2

Pages

241-252

Physical description

Dates

published
2017

Contributors

author
  • Zakład Anatomii Porównawczej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński w Krakowie, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Comparative Anatomy, Instytute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
  • Zakład Anatomii Porównawczej, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński w Krakowie, Gronostajowa 9, 30-387 Kraków, Polska
  • Department of Comparative Anatomy, Instytute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland

References

  • Ahnesjö I., 1989. Sex-role reversal in two pipefish (Syngnathidae) species: paternal care and male limitation of female reproductive success. Acta Univ. Upsaliensis 233, 1-33.
  • Bergert B. A., Wainwright P. C., 1997. Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Syngnathus floridae. Marine Biol. 127, 563-570.
  • Berglund A., Rosenqvist G., 2003. Sex role reversal in pipefish. Adv. Stud. Behav. 32, 131-167.
  • Berglund A., Rosenqvist G., Svensson I., 1986. Mate choice, fecundity and sexual dimorphism in two pipefish species (Syngnathidae). Behav. Ecol. Sociobiol. 19, 301-307.
  • Berglund A., Rosenqvist G., Svensson I., 1989. Reproductive success of females limited by males in two pipefish species. Am. Natural. 133, 506-516.
  • Boisseau J. P., 1967. Les re´gulations hormonales de l'incubation chez un vertebre´ maˆ le: Recherches sur la reproduction de l'Hippocampe. Universite de Bordeaux, 379.
  • Bolt J., 1980. La faune ichthyologique des gisements du Monte Bolca (Province de Verone, Italie). Bulletin du Museum d'Histoire Naturelle de Paris 4, 339-396.
  • Carcupino M., Baldacci A., Mazzini M., Franzoi P., 2002. Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: a morphological and ultrastructural comparative study on three anatomically different pouches. J. Fish Biol. 61, 1465-1480.
  • Collin H. B., Collin S. P., 1995. Ultrastructure and organisation of the cornea, lens and iris in the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei). Histol. Histopathol. 10, 313-323.
  • Collin S. P., Fritzsch B., 1993. Observations on the shape of the lens in the eye of the silver lamprey, Ichthyomyzon unicuspis. Canad. J. Zool. 71, 34-41.
  • Colson D. J., Patek S. N., Brainerd E. L., Lewis S. M., 1998. Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ. Biol. Fishes 51, 221-229.
  • Crespi B., Semeniuk C., 2004. Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am. Natural. 163, 635-653.
  • Dawson C. E., 1985. Indo-pacific pipefishes (Red Sea to the Americas). Gulf Coast Research Laboratory, Ocean Springs, MS.
  • de Lussanet M. H. E., Muller M., 2007. The smaller your mouth, the longer your snout: predicting the snout length of Syngnathus acus, Centriscus scutatus and other pipette feeders. J. Royal Soc. Interface 4, 561-573.
  • Do H. H., Grønkjær P., Simonsen V., 2006. Otolith morphology, microstructure and ageing in the hedgehog seahorse, Hippocampus spinosissimus (Weber, 1913). J. Appl. Ichthyol. 22, 153-159.
  • Drozdov A. L., Kornienko E. S., Krasnolytskii, A. V., 1997. Reproduction and Development in Pipefish Syngnathus acusimilis. Biologiya Morya 23, 304-308.
  • Duncker G., 1915. Revision der Syngnathidae. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 32, 9-120.
  • Eschmeyer W. N., Fricke R., Van der Laan R., 2016. Catalog of fishes: genera, species, references. http://researcharchive.calacademy.org.
  • Fiedler K., 1954. Vergleichende Verhaltensstudien an Seenadeln, Schlangennadeln und Seepferdchen (Syngnathidae). Zeitschrift für Tierpsychology 11, 358-416.
  • Foster S. J., Vincent A., 2004. Life history and ecology of seahorses: implications for conservation and management. J. Fish Biol. 65, 1-61.
  • Franz-Odendaal T. A., Adriaens D., 2014. Comparative developmental osteology of the seahorse skeleton reveals heterochrony amongst Hippocampus sp. and progressive caudal fin loss. EvoDevo 5, 45.
  • Franzoi P., Maccagnani R., Rossi R., Ceccherelli V. U., 1993. Life cycles and feeding habits of Syngnathus taenionotus and S. abaster (Pisces, Syngnathidae) in a Brackish Bay of the Po River Delta (Adriatic Sea). Marine Ecol. Progr. Ser. 97, 71-81.
  • Fritzsche R. A., 1980. Revision of the eastern Pacific Syngnathidae (Pisces: Syngnathiformes), including both recent and fossil forms. Proc. California Acad. Sci. 42, 181-227.
  • Froese R., Pauly D., 2016. FishBase. www.fishbase.org.
  • Gioś, 2016. Ocena stanu środowiska polskich obszarów morskich Bałtyku na podstawie danych monitoringowych z roku 2014 na tle dziesięciolecia 2004-2013. Główny Inspektorat Ochrony Środowiska, http://www.gios.gov.pl/images/dokumenty/pms/monitoring_wod/Ocena_stanu_srodowiska_morze_2014_na_tle_2004-2013.pdf.
  • Gomon M. F., 1997. A remarkable new pygmy seahorse (Syngnathidae: Hippocampus) from Southeastern Australia, with a redescription of H. bargibanti Whitley from New Caledonia. Mem. Museum Victoria 56, 245-253.
  • Goldman J. N., Benedek G. B., 1967. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Invest. Ophthalmol. Visual Sci. 6, 574-600.
  • Grabowska J., Grabowski M., 2014. Ilustrowana encyklopedia ryb Polski. Dom Wydawniczy PWN, Warszawa.
  • Gronell A. M., 1984. Courtship, spawning and social organization of the pipefish, Corythoichthys intestinalis (Pisces: Syngnathidae) with notes on two congeneric species. Zeitschrift für Tierpsychologie 65, 1-24.
  • Gudger E. W., 1905. The breeding habits and segmentation of the eggs of the pipefish, Siphostoma floridae. Proc. US Nat. Museum 29, 447-499.
  • Helcom, 2016a. HELCOM Red list Species Information Sheet. http://www.helcom.fi/Red%20List%20Species%20Information%20Sheet/HELCOM%20Red%20List%20Nerophis%20ophidion.pdf#search=Nerophis%20ophidion.
  • Helcom, 2016b. HELCOM Red list Species Information Sheet. http://www.helcom.fi/Red%20List%20Species%20Information%20Sheet/HELCOM%20Red%20List%20Syngnathus%20typhle.pdf.
  • Iucn Red List, 2016. The IUCN Red List of threatened species. www.iucinredlist.org.
  • Jones A. G., Avise, J. C., 1997. Microsatellite analysis of maternity and the mating system in the gulf pipefish Syngnathus scovelli, a species with male pregnancy and sex-role reversal. Mol. Ecol. 6, 203-216.
  • Jones A. G., Kvarnemo C., Moore G. I., Simmons L. W., Avise J. C., 1998. Microsatellite evidence for monogamy and sex-biased recombination in the Western Australian seahorse Hippocampus angustus. Mol. Ecol. 7, 1497-1505.
  • Jones A. G., Rosenqvist G., Berglund A., Arnold S. J., 2000. The Bateman gradient and the cause of sexual selection in a sex role reversed pipefish. Proc. Royal Soc. B 267, 2151-2155.
  • Kaup, J. J., 1856. Catalogue of Lophobranchiate fish in the collections of the British Museum. Taylor & Francis, London.
  • Kendrick A. J., Hyndes G. A., 2005. Variations in the dietary compositions of morphologically diverse syngnathid fishes. Environ. Biol. Fishes 72, 415-427.
  • Kotlarczyk J., Jerzmanska A., Swidnicka E., Wiszniowska T., 2006. A framework of ichthyofaunal ecostratigraphy of the Oligocene-EarlyMiocene strata of the Polish Outer Carpathian basin. Ann. Societ. Geologorum Poloniae 76, 1-111.
  • Kvarnemo C., Moore G. I., Jones A. G., 2007. Sexually selected females in the monogamous Western Australian seahorse. Proc. Royal Soc. B 274, 521-525.
  • Laurent P., 1984. Gill internal morphology. Fish Physiol. 10 (Part A), 73-183.
  • Leysen H., Roos G., Adriaens D., 2011a. Morphological variation in head shape of pipefishes and seahorses in relation to snout length and developmental growth. J. Morphol. 272, 1259-1270.
  • Leysen H., Dumont E. R., Brabant L., Van Hoorebeke L., Adriaens D., 2011b. Modelling stress in the feeding apparatus of seahorses and pipefishes (Teleostei: Syngnathidae). Biol. J. Linnean Soc. 104, 680-691.
  • Lim A. C. O., Chong,V. C., San Wong C., Muniandy S. V., 2015. Sound signatures and production mechanisms of three species of pipefishes (Family: Syngnathidae). PeerJ 3, e1471.
  • Lindqvist C., Sundin J., Berglund A., Rosenqvist G., 2011. Male broad-nosed pipefish Syngnathus typhle do not locate females by smell. J. Fish Biol. 78, 1861-1867.
  • Linneusz K., 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. http://www.biodiversitylibrary.org/item/10277#page/12/mode/1up.
  • Lourie S. A., Pritchard J. C., Casey S. P., Ky T. S., Hall H. J., Vincent A. C. J., 1999. The taxonomy of Vietnam's exploited seahorses (family Syngnathidae). Biol. J. Linnean Soc. 66, 231-256.
  • Lythgoe J. N., 1976. The ecology, function and phylogeny of iridescent multilayers in fish corneas. [W]: Light as an ecological factor II. Bainbridge R., Evans G. C., Rackman O. (red.). Blackwell, Oxford, 211-247.
  • Margoński P., 1994. Some aspects of straight-nosed (Nerophis ophidion L.) and broad-nosed (Syngnathus typhle L.) pipefish biology in the Gulf of Gdańsk. Zeszyty Naukowe UG Oceanografia 13, 39-59.
  • Masonjones H. D., Lewis S. M., 1996. Courtship behavior in the dwarf seahorse, Hippocampus zosterae. Copeia 3, 634-640.
  • Matsumoto K., Yanagisawa Y., 2001. Monogamy and sex role reversal in the pipefish Corythoichthys haematopterus. Anim. Behav. 61, 163-170.
  • McCoy E. E., Jones A. G., Avise J. C., 2001. The genetic mating system and tests for cuckoldry in a pipefish species in which males fertilize eggs and brood offspring externally. Mol. Ecol. 10, 1793-1800.
  • Melamed P., Xue Y., Poon J. F. D., Wu Q., Xie H., Yeo J., Foo T. W. J., Chua H. K., 2005. The male seahorse synthesizes and secretes a novel C-type lectin into the brood pouch during early pregnancy. FEBS Lett. 272, 1221-1235.
  • Muller M., 1987. Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). J. Theoret. Biol. 126, 343-368.
  • Nelson J. S., 2006. Fishes of the world. John Wiley & Sons, Hoboken, NJ.
  • Oliveira F., Erzini K., Gonçalves J. M., 2007. Feeding habits of the deep-snouted pipefish Syngnathus typhle in a temperate coastal lagoon. Estuar. Coastal Shelf Sci. 72, 337-347.
  • Oliveira T. P. R., Ladich F., Abed-Navandi D., Souto A. S., Rosa I. L., 2014. Sounds produced by the longsnout seahorse: a study of their structure and functions. J. Zool. 394, 114-121.
  • Orr J. W., 1995. Phylogenetic relationships of Gasterosteiform fishes (Teleostei: Acanthomorpha). PhD Thesis, University of Washington, Seattle, WA.
  • Paczolt K. A., Jones A. G., 2015. The effects of food limitation on life history tradeoffs in pregnant male gulf pipefish. PloS One 10, 124-147.
  • Perante N. C., Vincent A. C. J., Pajaro M. G., 1998. Demographics of the seahorse Hippocampus comes in the central Philippines. [W:] Proceedings of the 3rd International Conference on the Marine Biology of the South China Sea. Hong Kong University Press, Hong Kong, 439-448.
  • Pham T. M., 1992. Cultivation of the Sea Horse Hippocampus kuda. Biologiya Morya 5-6, 93-96.
  • Porter M. M., Novitskaya e., Castro-Ceseña A. B., Meyers M. A., McKittrick J., 2013. Highly deformable bones: Unusual deformation mechanisms of seahorse armor. Acta Biomater. 9, 6763-6770.
  • Porter M. M., Adriaens D., Hatton R. L., Meyers M. A., McKittrick J., 2015. Why the seahorse tail is square. Science 349, 66-83.
  • Praet T., Adriaens D., Cauter S. V., Masschaele B., Beule M. D., Verhegghe B., 2012. Inspiration from nature: dynamic modelling of the musculoskeletal structure of the seahorse tail. Int. J. Numerical Meth. Biomed. Engine. 28, 1028-1042.
  • Prein M., Kunzmann A., 1987. Structural organization of the gills in pipefish (Teleostei, Syngnathidae). Zoomorphology 107, 161-168.
  • Ratterman N. L., Rosenthal G. G., Jones, A. G., 2009. Sex recognition via chemical cues in the sex-role-reversed gulf pipefish (Syngnathus scovelli). Ethology 115, 339-346.
  • Ripley J. L., Foran C. M., 2007. Influence of estuarine hypoxia on feeding and sound production by two sympatric pipefish species. Marine Environ. Res. 63, 350-367.
  • Roos G., Leysen H., Van Wassenbergh S., Herrel A., Jacobs P., Dierick M., Aerts P., Adriaens D., 2009. Linking morphology and motion: A test of a four-bar mechanism in seahorses. Physiol. Biochem. Zool. 82, 7-19.
  • Roos G., Van Wassenbergh S., Aerts P., Herrel A., Adriaens D., 2011. Effects of snout dimensions on the hydrodynamics of suction feeding in juvenile and adult seahorses. J. Theoret. Biol. 269, 307-317.
  • Rosenqvist G., Berglund A., 2011. Sexual signals and mating patterns in Syngnathidae. J. Fish Biol. 78, 1647-1661.
  • Sagebakken G., Ahnesjö I., Mobley K. B., Gonçalves I. B., Kvarnemo C., 2009. Brooding fathers, not siblings, take up nutrients from embryos. Proc. Royal Soc. London B, Biol. Sci. 277, 971-977.
  • Silva K., Vieira M. N., Almada V. C., Monteiro N. M., 2010. Reversing sex role reversal: compete only when you must. Anim. Behav. 79, 885-893.
  • Skóra K. E., 2001. The broad-nosed pipefish [W:] Polish Red Data Book of Animals. Vertebrates. Głowaciński Z. (red.). PWRiL, Warszawa, 316-318.
  • Steffe A. S., Westoby M., Bell J. D., 1989. Habitat selection and diet in two species of pipefish from seagrass: Sex differences. Marine Ecol. Progr. Ser. 55, 28-80.
  • Stockley P., Gage M. J. G., Parker G. A., Moller A. P., 1997. Sperm competition in fishes: The evolution of testis size and ejaculate characteristics. Am. Natural. 149, 933-954.
  • Stolting K. N., Wilson A. B., 2007. Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29, 884-896.
  • Strawn K., 1958. Life History of the pigmy seahorse Hippocampus zosterae Jordan and Gilbert at Cedar Key, Florida. Copeia 1, 16-22.
  • Van Look K. J. W., Dzyuba B., Cliffe A., Koldewey H. J., Holt W. V., 2007. Dimorphic sperm and the unlikely route to fertilisation in the yellow seahorse. J. Exp. Biol. 210, 432-437.
  • Van Wassenbergh S., Strother J. A., Flammang B. E., Ferry-Graham L. A., Aerts P., 2008. Extremely fast prey capture in pipefish is powered by elastic recoil. J. Royal Soc. Interf. 5, 285-296.
  • Van Wassenbergh S., Roos G., Aerts P., Herrel A., Adriaens D., 2011a. Why the long face? A comparative study of feeding kinematics of two pipefishes with different snout lengths. J. Fish Biol. 78, 1786-1798.
  • Van Wassenbergh S., Roos G., Ferry L., 2011b. An adaptive explanation for the horse-like shape of seahorses. Nat. Comm. 2, 164.
  • Vincent A. C. J., 1994a. Seahorses exhibit conventional sex roles in mating competition, despite male pregnancy. Behaviour 128, 135-151.
  • Vincent A. C. J. 1994b. Operational sex ratios in seahorses. Behaviour 128, 153-167.
  • Vincent A. C. J., Ahnesjö I., Berglund A., Rosenqvist G., 1992. Pipefishes and seahorses: are they all sex role reversed? Trends Ecol. Evol. 7, 237-241.
  • Vincent A. C. J., Berglund A., Ahnesjö I., 1995. Reproductive ecology of five pipefish species in one eelgrass meadow. Environ. Biol. Fishes 44, 347-361.
  • Walls G. L., 1942. The vertebrate eye and its adaptive radiation. The Cranbrook Institute of Science, Michigan.
  • Watanabe S., Watanabe Y., Okiyama M., 1997. Monogamous mating and conventional sex roles in Hippichthys penicillus (Syngnathidae) under laboratory conditions. Ichthyol. Res. 44, 306-310.
  • Watanabe S., Kaneko T., Watanabe Y., 1999. Immunocytochemical detection of mitochondria-rich cells in the brood pouch epitelium of the pipefish, Syngnathus schlegeli: Structural comparison with mitochondria-rich cells in the gills and larval epidermis. Cell Tiss. Res. 295, 141-149.
  • Watanabe S., Hara M., Watanabe K., 2000. Male internal fertilization and introsperm-like sperm of the seaweed pipefish (Syngnathus schlegeli). Zool. Sci. 17, 759-767.
  • Wilson A. B., Orr J. W., 2011. The evolutionary origins of Syngnathidae: pipefishes and seahorses. J. Fish Biol. 78, 1603-1623.
  • Wilson A. B., Vincent A., Ahnesjö I., Meyer A., 2001. Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. J. Hered. 92, 159-166.
  • Wilson A. B., Ahnesjö I., Vincent A., Meyer A., 2003. The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seehorses (family Syngnathidae). Evolution 57, 1374-1386.
  • Wilson, N. G., Rouse G. W., 2010. Convergent camouflage and the non monophyly of 'seadragons' (Syngnathidae: Teleostei): suggestions for a revised taxonomy of syngnathids. Zoologica Scripta 39, 551-558.
  • Zalohar J., Hitij T., Kriznar, M., 2009. Two new species of seahorses (Syngnathidae, Hippocampus) from the Middle Miocene (Sarmatian) Coprolitic Horizon in Tunjice Hills, Slovenia: the oldest fossil record of seahorses. Ann. Paleontol. 95, 71-96.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p241kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.