PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 2 | 217-224
Article title

Oddziaływania allelopatyczne sinic i mikroglonów w środowisku wodnym

Content
Title variants
EN
Allelopathic interactions of cyanobacteria and microalgae in aquatic ecosystem
Languages of publication
PL EN
Abstracts
PL
Termin "allelopatia" został wprowadzony do nauki w 1937 r. przez austriackiego profesora Hansa Molischa. Użył on pojęcia allelopatii do określenia wzajemnego oddziaływania pomiędzy organizmami roślinnymi poprzez wydzielanie związków chemicznych. W 1996 r. International Allelopathy Society poszerzyło tę definicję, wskazując, że jest to każdy proces, w którym substancje chemiczne wydzielane przez jedne organizmy oddziałują na rozwój innych gatunków roślinnych i zwierzęcych. Oddziaływanie allelopatyczne może być istotnym czynnikiem wpływającym na formowanie się masowych zakwitów sinic i mikroglonów w wielu zbiornikach wodnych. Zakwity tych organizmów w ostatnich dziesięcioleciach znacznie się nasiliły i stanowią dziś poważny problem ekologiczny i ekonomiczny. Dostarczenie nowych informacji na temat sposobu i zakresu oddziaływania allelopatycznego sinic i mikroglonów może mieć ważne znaczenie dla pełniejszego zrozumienia nasilającego się na całym świecie zjawiska masowych zakwitów tych organizmów w wielu ekosystemach wodnych
PL
The term "allelopathy" was introduced to science in 1937 by Hans Molisch, who used the concept of allelopathy to identify negative impact of chemicals secreted by a plant on the growth of other neighboring plants. In 1996, the International Allelopathy Society has broadened the meaning of allelopathy as any inhibitory or stimulatory process in which chemical substances secreted by various organisms interact with their ecosystem. Allelopathy may be one of the factors contributing to formation and maintenance of cyanobacterial and algal blooms, which strongly affect coastal marine ecosystems and cause economic problems for commercial aquaculture. A better understanding of the complexity and nature of underlying allelopatic interactions may help to explain the emergence of massive blooms of cyanobacteria and algae in many aquatic ecosystems.
Journal
Year
Volume
66
Issue
2
Pages
217-224
Physical description
Dates
published
2017
Contributors
  • Pracownia Ekofizjologii Roślin Morskich, Instytut Oceanografii, Uniwersytet Gdański, Al. M. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
author
  • Pracownia Ekofizjologii Roślin Morskich, Instytut Oceanografii, Uniwersytet Gdański, Al. M. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
References
  • Akehurst S. C., 1931. Observations on pond life, with special reference to the possible causation of swarming of phytoplankton. J. Royal Micr. Soc. 9, 1-48.
  • Allen J. I., Anderson D., Burford M., Dyhrman S., Flynn K., Glibert P. M., Granéli E., Heil C., Sellner K., Smayda T., Zhou M., 2006. Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems. [W:] GEOHAB report 4. Glibert P. (red.). IOC and SCOR, France and Baltimore, MD, USA, 1-74.
  • Antunes J. T., Leão P. N., Vasconcelos V. M., 2012. Influence of Biotic and Abiotic Factors on the Allelopathic Activity of the Cyanobacterium Cylindrospermopsis raciborskii Strain LEGE 99043. Microb. Ecol. 64, 584-592.
  • Berry J., 2011. Marine and freshwater microalgae as a potential source of novel herbicides. [W:] Herbicides and Environment. Kortekamp A. (red.). Croatia, In Tech, 705-734.
  • Fistarol G. O., Legrand C., Granéli E., 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Progr. Ser. 255, 115-125.
  • Fistarol G. O., Legrand C., Selander E., Hummert C., Stolte W., Granéli E., 2004. Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat. Microb. Ecol. 35, 45-56.
  • Gantar M., Berry J. P., Thomas S., Wang M., Perez R., Rein K. S., King G., 2008. Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol. Lett. 64, 55-64.
  • Gätz N. 1990. Untersuchungen zur Stickstoff-und Phosphor-Versorgung von Microcystis aeruginosa Kütz. und Microcystis flos-aquae (Wittr.) Kirchn. im Neusiedlersee. na.
  • Granéli E., Hansen P. J., 2006. Allelopathy in harmful algae: a mechanism to compete for resources? [W:] Ecology of harmful algae. Granéli E., Turner J. (red.). Ser. Ecol. Stud. 189, 189-201.
  • Granéli E., Salomon P. S., Fistarol G. O., 2008a. The role of allelopathy for harmful algal bloom formation. [W:] Algal toxins: nature, occurrence, effect and detection. Evangelista V., Barsanti L., Frassanito A., Passarelli V., Gualtieri P. (red.). NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, Netherlands, 159-178.
  • Granéli E., Weberg M, Salomon P. S., 2008b. Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae 8, 94-102.
  • Gregor J., Jančula D., Maršálek B., 2008. Growth assays with mixed cultures of cyanobacteria and algae assessed by in vivo fluorescence: One step closer to real ecosystems? Chemosphere 70, 1873-1878.
  • Gross E. M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313-339.
  • Hairston N. G., Holtmeier C. L., Lampert W., Weider L. J., Post D. M., Fischer J. M., Caceres C. E., Fox J. A., Gaedke U., 2001. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55, 2203-2214.
  • IAS, 1996. First world congress on allelopathy. A science for the future. Accessed 2007-10-30. http://www-ias.uca.es/ bylaws.htm#CONSTI.
  • Inderjit, Dakshini K. M. M., 1994. Algal allelopathy. Bot. Rev. 60, 182-197.
  • Keating K. I., 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196, 885-887.
  • Lafforgue M., Szeligiewicz W., Devaux J, Poulin M., 1995. Selective mechanisms controlling algal succession in Aydat Lake. Water Sci. Technol. 32, 117-127.
  • Larsen A., Bryant S., 1998. Growth and toxicity in Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature. Sarsia 83, 409-418.
  • Leflaive J., Ten-Hage L., 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwat. Biol. 52, 199-214.
  • Legrand C., Rengefors K., Fistarol G. O., Granéli E., 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42, 406-419.
  • Mason C. P., Edwards, K. R., Carlson, R. E., Pignalello, J., Gleason, F. K., Wood, J. M., 1982. Isolation of a chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215, 400-402.
  • Molisch H., 1937. Der Einfluss einer Pflanze auf die andere: Allelopathie. Fischer Verlag, Jena.
  • Rengefors K., Legrand C., 2001. Toxicity in Peridinium aciculiferum - an adaptive strategy to outcompete other winter phytoplankton? Limnol. Oceanograp. 46, 1990-1997.
  • Rice E. L. 1979. Allelopathy-an update. Bot. Rev. 45, 15-109.
  • Schagerl M., Unterrieder I., Angeler D. G., 2002. Allelopathy among cyanoprokaryota and other algae originating from Lake Neusiedlersee (Austria). Int. Rev. Hydrobiol. 87, 365-374.
  • Schlegel I., Doan N. T., de Chazal N., Smith G. D., 1999. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J. Appl. Phycol. 10, 471-479.
  • Schmidt L. E., Hansen P. J., 2001. Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Progr. Ser. 216, 67-81.
  • Suikkanen S., Fistarol G. O., Granéli E., 2004. Allelopathic effects of the Baltic Cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85-101.
  • Śliwińska-Wilczewska S., Pniewski F., Latała A., 2016. Allelopathic activity of the picocyanobacterium Synechococcus sp. under varied light, temperature and salinity conditions. Int. Rev. Hydrobiol. 101, 1-9.
  • Takamo K., Igarashi S., Mikami H., Hino S., 2003. Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnology 4, 73-78.
  • von Elert E., Jüttner F., 1997. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol. Oceanograp. 42, 1796-1802.
  • Wolfe G.V., 2000. The chemical defense ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. Biol. Bull. 198, 225-244.
  • Yamasaki Y., Nagasoe S., Matsubara T., Shikata T., Shimasaki Y., Oshima Y., Honjo T., 2007. Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Mar. Ecol. Progr. Ser. 339, 83-92.
  • Żak A., Kosakowska A., 2015. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coastal Shelf Sci. 167, 113-118.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p217kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.