PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 2 | 193-206
Article title

Metody oparte o amplifikację DNA techniką PCR wykorzystywane w ocenie bioróżnorodności mikroorganizmów glebowych

Content
Title variants
EN
Methods based on DNA PCR-amplification for evaluation of the soil microbial diversity
Languages of publication
PL EN
Abstracts
PL
Mikroorganizmy glebowe, pod względem cech genomowych i fenotypowych, stanowią wysoce zróżnicowaną grupę organizmów żywych. Z powodu tak dużej różnorodności ważne jest dobranie odpowiednich metod, dających największy stopień różnicowania mikroorganizmów. Narzędziami umożliwiającym analizę zmienności genetycznej mikroorganizmów są techniki genetyczne, a wśród nich jedną z najważniejszych jest łańcuchowa reakcja polimerazy, czyli PCR (Polymerase Chain Reaction), technika opracowana w latach 1980. Niniejsza praca stanowi przegląd podstawowych zagadnień dotyczących badania zmienności genetycznej mikroorganizmów glebowych w oparciu o markery molekularne z wykorzystaniem technik bazujących na reakcji PCR tj. PCR-RFLP, TRFLP, ARDRA, RAPD.
EN
Soil microorganisms represent a highly diverse group of living organisms in terms of genomic and phenotypic characteristics. Due to such a large diversity, it is important to select appropriate identification methods which would secure its most complete determination. Genetic techniques are proper tools of choice for analyzing genetic variability of microorganism, the most important of which is the polymerase chain reaction (PCR), developed in the 1980s. This work presents an overview of the basic issues concerning studies on genetic variability of soil microorganisms with help of molecular markers and application of PCR techniques such as PCR-RFLP, TRFLP, ARDRA, RAPD.
Journal
Year
Volume
66
Issue
2
Pages
193-206
Physical description
Dates
published
2017
Contributors
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy Nawożenia i Gleboznawstwa, Państwowy Instytut Badawczy, Czartoryskich 8, 24-100 Puławy, Polska
  • Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
  • Zakład Mikrobiologii Rolniczej, Instytut Uprawy Nawożenia i Gleboznawstwa, Państwowy Instytut Badawczy, Czartoryskich 8, 24-100 Puławy, Polska
  • Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
References
  • Aranda-Olmedo I., Tobes R., Manzanera M., Ramos J. L., Marques S., 2002. Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida, nucleic. Acids. Res. 30, 1826-1833.
  • Baj J., Markiewicz Z., 2006. Pozycja filogenetyczna bakterii i zasady ich taksonomii. [W:] Biologia molekularna bakterii. Mostowik K. (red.). Wydawnictwo Naukowe PWN, Warszawa, 4-18.
  • Brown M. V., Fuhrman J. A., 2005. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat. Microb. Ecol. 41, 15-23.
  • Brown T. A., 2012. Analiza DNA; Mapowanie genomów. [W:] Genomy. Węgleński P. (red.). Wydawnictwo Naukowe PWN, Warszawa, 55-57 i 67.
  • Cetecioglu Z., Ince O., Ince B., 2012. Gel electrophoresis based genetic fingerprinting techniques on environmental ecology. [W:] Gel electrophoresis - advanced techniques. Magdeldin S. (red.). Rijeka, Croatia, 51- 66.
  • Chen Y, Zhou F, Li G, Xu Y., 2008. A recently active miniature inverted-repeat transposable element, Chunjie, inserted into an operon without disturbing the operon structure in Geobacter uraniireducens Rf4. Genetics 179, 2291-2297.
  • Chriki-Adeeb R., Chriki A., 2015. Bayesian phylogenetic analysis of rhizobia isolated from root-nodules of three tunisian wild legume species of the genus Sulla. J. Phylogen. Evolut. Biol. 3, 1-9.
  • Cornea C. P., Voaide C., Ciuca M., Stan V., Gament E., Razec I., Dusa M., 2011. Molecular methods for assessement the bacterial communities from different type of soils in Romania. Not. Bot. Hort. Agrobot. Cluj. 39, 64-70.
  • Correia F. F., Inouye S., Inouye M., 1988. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J. Biol Chem. 263, 12194-12198.
  • De Bruijn F. J., 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microb. 58, 2180-2187.
  • De Gregorio E., Silvestro G., Venditti R., Carlomagno M. S., Di Nocera P. P., 2006. Structural organization and functional properties of miniature DNA insertion sequences in yersiniae. J. Bacteriol. 188, 7876-7884.
  • Delgado S., Mayo B., 2004. Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus spp. strains isolated from Northern Spain starter-free farmhouse cheeses. Int. J. Food. Microbiol. 90, 309-319.
  • Devi M., Nithyananthi M. J. T., Nithya R., Romauld S. I., Nithya R., Jayashree R., 2014. Genetic variability among protease producing microorganism using RAPD technique. Int. J. Chem. Tech. Res.6, 4312-4317.
  • Dherbecourt J., Thierry A., Madec M. N., Lortal S., 2006. Comparison of amplified ribosomal DNA restriction analysis, peptidoglycan hydrolase and biochemical profiles for rapid dairy propionibacteria species identification. Res. Microbiol. 157, 905-913.
  • Dunbar J., Ticknor L. O., Kuske C.R., 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microb. 66, 2943-2950.
  • Dziewit Ł., Bartosik D., 2011. Genomy prokariotyczne w świetle analiz gnomicznych. Post. Mikrobiol. 50, 87-96.
  • Espeli O., Moulin L., Boccard F., 2001. Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J. Mol. Biol. 314, 375-386.
  • Fakruddin M., Mannan K. S. B., 2013. Methods for analyzing diversity of microbial communities in natural environments. Ceylon J. Sci. (Biol. Sci.) 42, 19-33.
  • Fernandez A., Huang S., Seston S., Xing J., Hickey R., Criddle C., Tiedje J., 1999. How stable is stable? Function versus community composition. Appl. Environ. Microb. 65, 3697-3704.
  • Ferreira dos Santos C., Sakai V. T., Aparecida de Andrade M., Machado M., Schippers D. N., Greene A.S., 2004. Reverse transcription and polymerase chain reaction: principles and applications in dentistry. J. Appl. Oral. Sci. 12, 1-11.
  • Fierer N., Jackso R. B., 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626-631.
  • Fisher M. M., Triplett E. W., 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microb. 65, 4630-4636.
  • Friedrich U., Prior K., Altendorf K., Lipski A., 2002. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ. Microbiol. 4, 721-773.
  • Gałązka A., Gałązka R., 2015. Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant. Pol. J. Microbiol. 64, 239-250.
  • Gałązka A., Król M., Perzyński A., 2012. The efficiency of rhizosphere bioremediation with Azospirillum sp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol. J. Environ. Stud. 21, 345-353.
  • Gich F. B., Amer E., Figueras J. B., Abella C. A., Balaguer M. D., Poch M., 2000. Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int. Microbiol. 3, 103-106.
  • Gürtler V., Stanisich V. A., 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142, 3-16.
  • Hall V., O'Neill G. L., Magee J. T., Duerden B. I., 1999. Development of amplified 16S ribosomal DNA restriction analysis for identification of Actinomyces species and comparison with pyrolysis-mass spectrometry and conventional biochemical tests. J. Clin. Microbiol. 37, 2255-2261.
  • Haubold B, Wiehe T., 2006. How repetitive are genomes? BMC Bioinformatics 7, 1-10.
  • Hilton S., Bennett A. J., Keane G., Bending G. D., Chandler D., Stobart R., Mill, P., 2013. Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline. PLoS One 8, 1-12.
  • Holland P. M, Abramson R. D., Watson R., Gelfand D. H., 1991. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276-7280.
  • Hulton C. S. J., Higgins C. F., Sharp P. M., 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other Enterobacteria. Mol. Microbiol. 5, 825-834.
  • Ingianni A., Petruzzelli S., Morandotti G., Pompei R., 1997. Genotypic differentiation of Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS Immunol. Med. Mic. 18, 61-66.
  • Jampachaisri K., Valinsky L., Borneman J., Press S. J., 2005. Classification of oligonucleotide fingerprints: application for microbial community and gene expression analyses. Bioinformatics 21, 3122-3130.
  • Jarabo-Lorenzo A., Pérez-Galdona R., Donate-Correa J., Rivas R., Velázquez E., Hernández M., Temprano F., Martinez-Molina E., Ruiz-Argüeso T., León-Barrios M., 2003. Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst. Appl. Microbiol. 26, 611-623.
  • Jawad A., Snelling A. M., Heritage J., Hawkey P. M., 1998. Comparison of ARDRA and recA-RFLP analysis for genomic species identification of Acinetobacter spp. FEMS Microbiol. Lett. 165, 357-362.
  • Judd A. K., Schneider M., Sadowsky M. J., De Bruijn F. J., 1993. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum Serocluster 123 Strainst. Appl. Environ. Microb. 59, 1702-1708.
  • Kaneko T., Nakajima N., Okamoto S. i współaut., 2007. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res. 14, 247-256.
  • Kazubek M., Długosz A., Pawlik K., 2010. Zastosowanie technik PCR w toksykologii. Postepy Hig. Med. Dosw. 64, 482-489.
  • Kirk J. L, Beaudette L. A., Hart M., Moutoglis P., Klironomos J. N., Lee H., Trevors J. T., 2004. Methods of studying soil microbial diversity. J. Microbiol. Meth. 58,169-188.
  • Koeuth T., Versalovic J., Lupsk J. R., 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res. 5, 408-418.
  • Kondak K., 2009. Molekularne metody diagnostyki mikrobiologicznej. J. Labor. Diagnost. 45, 325-331.
  • Krawczyk B., 2007. Diagnostyka molekularna w zakażeniach szpitalnych. Post. Mikrobiol. 46, 367-378.
  • Kumar R., Joshi S. R., 2015. Microbial Ecology of Soil: Studying the diversity of microorgansims in the most complex of the environments. A review. Adv. Appl. Microbiol. 19, 267-279.
  • Liczbańska A., Wożniak A., Wawrocka A., Krawczyński M.R., 2006. Techniki wykorzystywane w diagnostyce molekularnej chorób jednogenowych. Nowiny Lekarskie 75, 486-490.
  • Liu H. J., Yang C. Y., Tian Y., Lin G. H., Zheng T. L., 2010. Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP. Mar. Pollut. Bul. 60, 2056-2061.
  • Liu W., Marsh T. L., Cheng H., Forney L. J., 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microb. 63, 4516-4522.
  • Łyszcz M., Gałązka A., 2016. Wybrane metody molekularne wykorzystywane w ocenie bioróżnorodności mikroorganizmów glebowych. Post. Mikrobiol. 55, 309-319.
  • Marciniak M., Robak M., 2012. PCR jako narzędzie do identyfikacji i różnicowania drobnoustrojów. Acta Sci. Pol. Biotechnol. 11, 5-16.
  • Martin B., Humbert O., Camara M., Guenzi E., Walker J., Mitchell T., Andrew P., Prudhomme M., Alloing G., Hakenbeck R., Morrison D. A., Boulnois G. J., Claverys J. P., 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20, 3479-3483.
  • Moeseneder M. M., Arrieta J. M., Muyzer G., Winter C., Herndl G. J., 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microb. 65, 3518-3525.
  • Mullis K. B., Faloona F. A., 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Method. Enzymol. 155, 335-350.
  • Niemann S., Dammann-Kalinowski T., Nagel A., Pühler A., Selbitschka W., 1999. Genetic basis of enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint pattern in Sinorhizobium meliloti and identifiaction of S. meliloti employing PCR primers derived from an ERIC-PCR fragment. Arch. Microbiol. 172, 22-30.
  • Ochman H., Gerber A. S., Hart D. L., 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621-623.
  • Olive D. M., Bean P.,1999. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37, 1661-1669.
  • Oravecz O., Elhottova D., Kristufek V., Sustr V., Frouz J., Triska J., Marialigeti K., 2004. Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera:Bibionidae): a pilot study. Folia Microbiol. 49, 83-93.
  • Osborn A. M., Moore E. R. B., Timmis K. N., 2000. An evaluation of terminal-restriction fragment length polymorphisms (TRFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2, 39-50.
  • Osorio C. R., Collins M. D., Romalde J. L., Toranzo A. E., 2005. Variation in 16S-23S rRNA intergenic spacer regions in Photobacterium damselae: a mosaic-like structure. Appl. Environ. Microb. 71, 636-645.
  • Ovreas L., Torsvik V. V., 1998. Microbial diversity and community structure in two different agricultural soil communities. Microbial. Ecol. 36, 303-315.
  • Pandey J., Chauhan A., Jain R. K., 2009. Integrative approaches for assessing the ecological sustainability of in situ bioremediation. Fems. Microbiol. Rev. 33, 324-375.
  • Paul D., Singh R., Jain R. K., 2006. Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ. Microbiol. 8, 1797-1804.
  • Perez-de-Mora A., Engel M., Schloter M., 2011. Abundance and diversity of n-alkane-degrading bacteria in a forest soil cocontaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microbial. Ecol. 62, 959-972.
  • Picard C., Di Cello F., Ventura M., Fani R., Guckert A., 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microb. 66, 948-955.
  • Poly F., Monrozier L. J., Bally R., 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152, 95-103.
  • Ranjard L., Poly F., Nazaret S., 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151, 167-177.
  • Rastogi G., Sani R. K., 2011. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. [W:] Microbes and microbial technology agricultural and environmental applications. Ahmad I., Ahmad F., Pichtel J. (red.). Springer Science+Business, New York Dordrechet Heidelberg London, 29-57.
  • Rincon-Florez V. A., Carvalhais L. C., Schenk P. M., 2013. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5, 581-612.
  • Rossello-Mora R., Amann R., 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39-67.
  • Saiki R., Gelfand D., Stoffel S., Scharf S., Higuchi R., Horn G., Mullis K., Erlich H., 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
  • Sette L. D., Simioni K. C., Vasconcellos S. P., Dussan L. J., Neto E. V., Oliveira V. M., 2007. Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Anton. Leeuw. 91, 253-266.
  • Shapiro J. A. von Sternberg R., 2005. Why repetitive DNA is essential to genome function. Biol. Rev. 80, 1-24.
  • Slabbert E., van Heerden C. J., Jacobs K., 2010. Optimisation of automated ribosomal intergenic spacer analysis for the estimation of microbial diversity in fynbos soil. S. Afr. J. Sci. 106, 1-4.
  • Smit E., Leeflang P., Wernars K., 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23, 249-261.
  • Spalik K., Piwczyński M., 2009. Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych. Kosmos 58, 485-498.
  • Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F., 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37, 1015-1026.
  • Stewart F. J., Cavanaugh C. M., 2007. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in Bacteria. J. Mol. Evol. 65, 44-67.
  • Studzińska A., Tyburski J., Daca P., Tretyn A., 2008. PCR w czasie rzeczywistym. Istota metody i strategie monitorowania przebiegu reakcji. Biotechnologa 1, 71-85.
  • Tiedje J. M., Asuming-Brempong S., Nusslein K., Marsh T. L., Flynn S. J., 1999. Opening the black box of soil microbial diversity. Appl. Soil. Ecol. 13, 109-122.
  • Tobes R., Pareja E., 2006. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 7, 1-12.
  • Tonin C., Vandenkoornhuyse P., Joner E. J., Straczek J., Leyval C., 2001. Assessment of arbuscularmycorrhizal fungi diversity in the rhizosphere of Violoacalaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10, 161-168.
  • Treangen T. J., Abraham A. L., Touchon M., Rocha E. P., 2009. Genesis, efects and fates of repeats in prokaryotic genomes. FEMS Microbiol. Rev. 33, 539-571.
  • Vaneechoutte M., Rossau R., De Vos P., Gillis M., Janssens D., Paepe N., De Rouck A., Fiers T., Claeys G., Kersters K., 1992. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol. Lett. 15, 227-233.
  • Vaneechoutte M., Riegel P., De Briel D., Monteil H., Verschraegen G., De Rouck A., Claeys G., 1995. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res. Microbiol. 146, 633-641.
  • Versalovic J., Lupski J. R., 1998. Interspersed repetitive sequences in bacterial genomes. [W:] Bacterial genomes: physical structure and analysis. Bruijn F. De., Lupski J. R., Weinstock G. M. (red.). Springer Science & Business Media, New York, 38-48.
  • Welsh J., McClelland M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213-7218.
  • Williams J. G., Kubelik A. R., Livak K. J., Rafalsky J. A., Tingey S. V., 1990. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res. 18, 6531-6535.
  • Wilson L. A., Sharp P. M., 2006. Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol. Biol. Evol. 23, 1156-1168.
  • Wright P. A., Wynford-Thomas D., 1990. The polymerase chain reaction: miracle or mirage? A critical review of its uses and limitations in diagnosis and research. J. Pathol. 162, 99-117.
  • Zagalska-Neubauer M., Dubiec A., 2007. Techniki i markery molekularne w badaniach zmienności genetycznej ptaków. Notatki Ornitologiczne 48, 193-206.
  • Zulkifli Y., Alitheen N. B., Son R., Raha A. R., Samue L., Yeap S. K., Nishibuchi M., 2009. Random amplified polymorphic DNA-PCR and ERIC PCR analysis on Vibrio parahaemolyticus isolated from cockles in Padang, Indonesia. Int. Food Res. J. 16, 141-150.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p193kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.