PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 2 | 153-166
Article title

Autofagia, czyli wielkie sprzątanie

Content
Title variants
EN
Autophagy, a big cleaning
Languages of publication
PL EN
Abstracts
PL
Autofagia jest procesem fizjologicznym zachodzącym u eukariontów (rośliny, grzyby i zwierzęta), polegającym na degradacji różnych składników komórki rozpoznanych jako uszkodzone lub zbędne. W zasadzie, każdy proces prowadzący do przekazania materiału komórkowego lizosomom należy uważać za autofiagię. W zjawisku kontrolowanej autodestrukcji lizosomy pełnią rolę komórkowego "zakładu oczyszczania i utylizacji odpadów". W pewnym uproszczeniu można uznać, że autofagia jest dla komórki "sprzątaczką" z umiejętnością recyklingu. Pomimo że o autofagii wiedziano już w latach 60. ubiegłego wieku, rodzaje autofagii (mikro-, makro- i autofagia zależna od białek opiekuńczych) oraz przebieg i mechanizmy sprawcze zostały poznane i szczegółowo opisane dopiero po wprowadzeniu nowych technik biologii molekularnej w czym szczególnie zasłużył się Yoshinori Ohsumi, uhonorowany w roku 2016 Nagrodą Nobla z Fizjologii lub Medycyny. Obecnie wiadomo, że autofagia nadzoruje ważne fizjologiczne funkcje, ale nabiera szczególnego znaczenia w warunkach stresu komórkowego, kiedy dochodzi do uszkodzenia komórki. Taka sytuacja ma miejsce w stanach chorobowych, przy czym wiele obserwacji zebranych od chorych i dane doświadczalne wskazują nieprawidłowo działającą autofagię jako przyczynę choroby.
EN
Autophagy is a physiological process found in eukariotes (plants, fungi, and animals) in which different cellular constituents identified as damaged or obsolete are degraded. In principle, every process of trafficking cell components into the lysosomes should be regarded as autophagy. In the progressive and controlled autodestruction the lysosomes represent waste disposal and recycling centre. Truthfully, autophagy could be considered a "housekeeper" with recycling capability. Alhough autophagy is known from early sixties of the last century, individual forms of autophagy (micro-, makro-, and chaperone-mediated autophagy, CMA) as well as precise course was not described in details unless molecular biology techniques were applied, for which Yoshinori Ohsumi was honoured with Nobel Prize in Physiology or Medicine in 2016. Nowadays, it is widely accepted that autophagy controls important physiological functions where cellular components need to be degraded and recycled, and it is even more important in stress conditions, when cells undergo damage. Such situations come up in diseases, moreover a great deal of observations obtained from sick individuals as well as experimental data confirm abnormal autophagy as a cause of disease.
Journal
Year
Volume
66
Issue
2
Pages
153-166
Physical description
Dates
published
2017
Contributors
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 166, 02-787 Warszawa, Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego PAN, Pawińskiego 5, 02-106 Warszawa, Polska
  • Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Mossakowski Medical Research Centre PAS, Pawińskiego 5, 02-106 Warsaw
References
  • Ashford T. P., Porter K. R., 1962. Cytoplasmic components in hepatic cell lysosomes. Brief Notes 1, 198-202.
  • Baba M., Takeshige K., Baba N., Ohsumi Y., 1994. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903-313.
  • Bandyopadhyay U., Kaushik S., Varticowski L., Cuervo A. M., 2008. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 28, 5747-5763.
  • Cadwell K., Liu J. Y., Brown S. L., Miyoshi H., Loh J., Lennerz J. K., Kishi C., Kc W., Carrero J. A., Hunt S., Stone C. D., Brunt E. M., Xavier R. J., Sleckman B. P., Li E., Mizushima N., Stappenbeck T. S., Virgin H. W. 4th, 2008. A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells. Nature 456, 259-263.
  • Choi K. S., 2012. Autophagy and cancer. Exp. Mol. Med. 44, 109-120.
  • Cuervo A. M., Dice J. F., 1998. Lysosomes, a meeting point of proteins, chaperones and proteases. J. Mol. Med. 76, 6-12.
  • Cuervo A. M., Dice J. F., 2000. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505-31513.
  • Cuervo A. M., Knecht E., Terlecky S. R., Dice J. F., 1995. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am. J. Physiol. Cell Physiol. 269, C1200-C1208.
  • Cuervo A. M., Dice J. F., Knecht E., 1997. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J. Biol. Chem. 272, 5606-5615.
  • Deretic V., 2009. Links between autophagy, innate immunity, inflammation and Crohn's disease. Digest. Diseases 27, 246-251.
  • Essick E. E., Sam F., 2010. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell. Longev. 3, 168-177.
  • Goligorsky M. S., 2010. SIRTing out the link between autophagy and ageing. Nephrol. Dialysis Transplant. 25, 2434-2436.
  • Hidvegi T., Ewing M., Hale P., Dippold C., Beckett C., Kemp C., Maurice N., Mukherjee A., Goldbach C., Watkins S ., Michalopoulos G., Perlmutter D. H., 2010. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229-232.
  • Inami Y., Waguri S., Sakamoto A., Kouno T., Nakada K., Hino O., Watanabe S., Ando J., Iwadate M., Yamamoto M., Lee M. S., Tanaka K., Komatsu M., 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Biol. Chem. 193, 275-284.
  • Jaeger P. A., Pickford F., Sun C. H., Lucin K. M., Masliah E., Wyss-Coray T., 2010. Regulation of amyloid precursor protein processing by the beclin 1 complex. PLoS ONE 5, e11102.
  • Kania E., Pająk B., Orzechowski A., 2015. Calcium homeostasis and ER stress in control of autophagy in cancer cells. BioMed Res. Internat. 2015, DOI: 10.1155/2015/352794.
  • Kimura T., Takabatake Y., Takahashi A., Isaka Y., 2013. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73, 3-7.
  • Klionsky D. J., 2008. Autophagy revisited. A conversation with Christian de Duve. Autohagy 4, 740-743.
  • Komatsu M., Waguri S., Kolke M., Sou Y. S., Ueno T., Hara T., Mizushima N., Iwata J. I., Ezaki J., Murata S., Hamazaki J., Nishito Y., Iemura S ., Natsume T., Yanagawa T., Uwayama J., Warabi E., Yoshida H., Ishii T., Kobayashi A., Yamamoto M., Yue Z., Uchiyama Y., Kominami E., Tanaka K., 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163.
  • Liu L., Yang M., Kang R., Wang Z., Zhao Y., Yu Y., Xie M., Yin X., Livesey K. M., Loze M. T., Tang D., Cao L., 2011. DAMP-mediated autophagy contributes to drug resistance. Autophagy 7, 112-114.
  • Mizushima N., Noda T., Yoshimori T., Tanaka Y., Ishii T., George M. D., Klionsky D. J., Ohsumi M., Ohsumi Y., 1998. A protein conjugation system essential for autophagy. Nature 395, 395-398.
  • Mizushima N., Yamamoto A., Hatano M., Kobayashi Y., Kabeya Y., Suzuki K., Tokuhisa T., Ohsumi Y., Yoshimori T., 2001. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657-667.
  • Morselli E., Maiuri M. C., Markari M., Megalou E, Pasparaki A., Palikaras K., Criollo A., Galluzzi L., Malik S. H., Vitale I., Michaud M., Madeo F., Tavernarakis N., Kroemer G., 2010. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 6, 186-188.
  • Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., Omiya S., Mizote I., Matsumura Y., Asahi M., Nishida K., Hori M., Mizushima N., Otsu K., 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619-624.
  • Ohsumi Y., 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211-216.
  • Pickrell A. M., Youle R. J., 2015. The roles of PINK1, Parkin and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273.
  • Rose J. M., Novoselov S. S., Robinson P. A., Cheetham M. E., 2011. Molecular chaperone-mediated rescue of mitophagy by a parkin RING1 domain mutant. Hum. Mol. Genet. 20, 16-27.
  • Sanchez-Serrano I., 2006. Success in translational research: lessons from the development of bortezomib. Nat. Rev. Drug Discov. 5, 107-114.
  • Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y., 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311.
  • Terlecky S. R., 1994. Hsp70s and lysosomal proteolysis. Experientia 50, 1021-1025.
  • Tsukada M., Ohsumi Y., 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174.
  • Uttenweiler A., Schwarz H., Mayer A., 2005. Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J. Biol. Chem. 280, 33289-33297.
  • Wing S. S., Chiang H-L., Goldberg A. L., Dice J. F., 1991. Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Bioch. J. 275, 165-169.
  • Yamamoto H., Fujioka Y., Suzuki S. W., Noshiro D., Suzuki H., Kondo-Kakuta C., Kimura Y., Hirano H., Ando T., Noda N. N., Ohsumi Y., 2016. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Develop. Cell 38, 86-99.
  • Yang L., Li P., Fu S., Calay E. S., Hotamisligil G. S., 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p153kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.