PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 66 | 1 | 11-29
Article title

"Ciężkozbrojny" pseudomonas aeruginosa: mechanizmy lekooporności i ich tło genetyczne

Content
Title variants
EN
"Heavily armed" pseudomonoas aeruginosa: mechanisms and genetic background of drug resistance.
Languages of publication
PL EN
Abstracts
PL
Występujące powszechnie i narastające zjawisko oporności na antybiotyki wśród bakterii chorobotwórczych jest jednym z największych wyzwań dzisiejszej medycyny zakażeń. Szczególne zagrożenie stanowią zakażenia szpitalne wywoływane przez wielooporne szczepy określonych gatunków, np. Pseudomonas aeruginosa. Jest to patogen oportunistyczny, odznaczający się opornością naturalną na kilka klas stosowanych antybiotyków. Dzięki wysokiej plastyczności genomu, obejmującej różnorodne mutacje funkcjonalne (strukturalne i regulacyjne) oraz pozyskiwanie obcego DNA, jest w stanie szybko adaptować się do niesprzyjających warunków środowiska. Szczególnie niepokoi zdolność nabywania przez P. aeruginosa dodatkowych cech oporności, co w połączeniu z naturalnymi mechanizmami czyni ten patogen wybitnie trudnym do zwalczania. Bakteria ta jest w stanie wywoływać m. in. ostre zapalenie płuc, zakażenia łożyska krwi, skóry i tkanek miękkich (w tym ran operacyjnych i oparzeniowych). Jest również czynnikiem etiologicznym zakażeń przewlekłych, towarzyszących np. mukowiscydozie. Antybiotykami stosowanymi obecnie przeciwko zakażeniom P. aeruginosa są najczęściej cefalosporyny III i IV generacji, karbapenemy, fluorochinolony i aminoglikozydy. W związku z malejącą liczbą dostępnych, skutecznych opcji terapeutycznych pracuje się nad nowymi terapeutykami lub nowatorskim wykorzystywaniem dotąd już poznanych.
EN
The rapid spread of antibiotic resistance (AMR) in pathogenic bacteria is one of the greatest challenges of modern infectiology. In particular, the most threatening are nosocomial infections caused by multi-drug-resistant strains of several major species, such as Pseudomonas aeruginosa. This opportunistic pathogen exibits a broad-spectrum of natural resistance. Due to its high genome plasticity, comprising functional mutations and acquisition of foreign DNA, P. aeruginosa can easily adapt and persist in harsh environmental niches. The critical issue is its outstanding ability to acquire diverse AMR mechanisms, including those encoded by mobile genetic determinants. In addition to the intrinsic resistance, P. aeruginosa can be highly resistant to all of the currently available antipseudomonadal antimicrobials. P. aeruginosa is the etiological agent of a variety of infections, including acute pneumonia, bloodstream infections or skin and soft tissue infections (e. g. postoperative or burn wounds). It is responsible also for chronic infections, like those in cystic fibrosis (CF) patients. The major antimicrobials used in P. aeruginosa infections are newer-generation cephalosporins, carbapenems, fluoroquinolones or aminoglycosides. Owing to limitations of the effective therapeutic options against P. aeruginosa, new antimicrobials and novel indications and thus applications for older drugs are being developed.
Journal
Year
Volume
66
Issue
1
Pages
11-29
Physical description
Dates
published
2017
Contributors
  • Zakład Mikrobiologii Molekularnej, Narodowy Instytut Leków, Chełmska 30/34, 00-725 Warszawa, Polska
  • Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
  • Zakład Mikrobiologii Molekularnej, Narodowy Instytut Leków, Chełmska 30/34, 00-725 Warszawa, Polska
  • Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
References
  • Alhazmi A., 2015. Pseudomonas aeruginosa - Pathogenesis and Pathogenic mechanisms. Int. J. Biol. 7, 44-67.
  • Allen R. C., Popat R., Diggle S. P., Brown S. P., 2014. Targeting virulence: can we make evolutionproof drugs? Nat. Rev. Microbiol. 12, 300-308.
  • Aminov R. I., 2010. A brief history of the antibiotic era: lessons learned and challanges for the future. Front. Microbiol. 1, 1-7.
  • Aubert D., Poirel L., Ben Ali A., Goldstein F.W., Nordmann P., 2001. OXA-35 is an OXA-10-related β-lactamase from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 48, 717-721.
  • Bae I. K., Suh B., Jeong S. H., Wang K. K., Kim Y. R., Yong D., Lee K., 2014. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with estended-spectrum activity. Diagn. Microbiol. Infect. Dis. 79, 373-377.
  • Balasubramanian D., Schneper L., Kumari H., Mathee K., 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acid Res. 41, 1-20.
  • Bassetti M., Ginocchio F., Mikulska M., 2011. New treatment options against Gram-negative organisms. Crit. Care 15, 1-9.
  • Bassetti M., Merelli M., Temperoni C., Astilean A., 2013. New antibiotics for bad bugs: where are we? Ann. Clin. Microbiol. Antimicrob. 12, 22.
  • Belotti P. T., Thabet L., Laffargue A., Andre C., Coulange-Mayonnove L., Arpin C., Messadi A., M'zali F., Quentin C., Dubois V., 2015. Description of an integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 70, 2237-2240.
  • Bernstein L. R., 1998. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 50, 665-682.
  • Berrazeg M., Jeannot K., Ntsogo Enguéné V. Y., Broutin I., Loeffert S., Fournier D., Plésiat P., 2015. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob. Agents Chemother. 59, 6248-6255.
  • Bezuidt O. K. I., Klockgether J., Elsen S., Attree I., Davenport C., Tümmler B., 2013. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB. BMC Genomics 14, 416.
  • Blair J., Webber M. A., Baylay A. J., Ogbolu D. O., Piddock L. J. V., 2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42-51.
  • Bonnin R., Poirel L., Nordmann P., Eikmeyer F.G., Wibberg D., Puhler A., Schluter A., 2013. Complete sequence of broad-host-range plasmid pNOR-2000 harbouring the metallo-β-lactamase gene blaVIM-2 from Pseudomonas aeruginosa.J. Antimicrob. Chemother. 68, 1060-1065.
  • Boronin A. M., 1992. Diversity of Pseudomonas plasmids: to what extent? FEMS Microbiol. Lett. 100, 461-467.
  • Boucher H. W., Talbot G. H., Bradley J. S., Edwards J. E., Gilbert D., Rice L. B., Scheld M., Spelberg B., Bartlett J., 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1-12.
  • Breidenstein E. B. M., De La Fuente-Nunez C., Hancock R. E., 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19, 419-426.
  • Bush K., Jacoby G. A., 2010. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969-976.
  • Bush K., Jacoby G. A., Medeiros A. A., 1995. A Functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents. Chemother. 39, 1211-1233.
  • Campbell J. I. A., Cioufu O., Hoiby N., 1997. Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogenous in the ampC-ampR genetic region. Antimicrob. Agents Chemother. 41, 1380-1384.
  • Ceniceros A., Pertega S., Galeiras R., Mourelo M., López E., Broullón J., Sousa D., Freire D., 2016. Predicting mortality in burn patients with bacteraemia. Infection 44, 215-222.
  • Ceyssens P. J., Lavigne R., 2010. Bacteriophages of Pseudomonas. Future Microbiol. 5, 1041-1055.
  • Chambers H. F., Deleo F. R., 2009.. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7629-7641.
  • Cheng G., Dai M., Ahmed S., Hao H., Wang X., Yuan Z., 2016. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front. Microbiol. 7, 470.
  • Chiu C. M., Thomas C. M., 2004. Evidence for past integration of IncP-1 plasmids into bacterial chromosomes. FEMS Microbiol. Lett. 241, 163-169.
  • Cohen M. L., 1992. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257, 1050-1055.
  • Cohen M. L., 2000. Changing patterns of infectious disease. Nature 406, 762-767.
  • D'Agata E., 2015. Pseudomonas aeruginosa and other Pseudomonas species [W:] Principles and Practice of Infectious Diseases. Bennet J. E., Dolin R., Blaser M. (red.). Elsevier-Saunders, Philadelphia, 2518-2532.
  • Danel F., Hall L. M., Gur D., Livermore D. M., 1995. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39, 1881-1884.
  • Danel F., Hall L. M., Gur D., Livermore D. M., 1997. OXA-15, an extended-spectrum variant of OXA-2 beta-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob. Agents Chemother. 41, 785-790.
  • Datts N., 1962. Transmissible drug resistance in an epidemic strain of Salmonella typhimurium. J. Hygiene 60, 301-310.
  • Davies J., 1995. Vicious circles: looking back on resistance plasmids. Genetics 139, 1465-1468.
  • Davies J., Davies D., 2010. Originis and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417-433.
  • Dubois V., Arpin C., Noury P., Quentin C., 2002. Clinical strain of Pseudomonas aeruginosa carrying a blaTEM-21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob. Agents Chemother. 46, 3624-3626.
  • Fajardo A., Amado-Hernando S., Oliver A., Ball G., Filloux A., Martinez L. J., 2014. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 69, 2972-2978.
  • Edelstein M. V., Skleenova E. N., Shevchenko O. V., D'souza J. W., Tapalski D. V., Azizov I. S., Sukhorukova M. V., Pavlukov R. A., Kozlov R. S., Toleman M. A., Walsh T. R., 2013. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 13, 867-876.
  • Empel J., Filczak K., Mrówka A., Hryniewicz W., Livermore D. M., Gniadkowski M., 2007. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β-lactamase in Warsaw, Poland: Further evidence for an international clonal complex. J. Clin. Microbiol. 45, 2829-2834.
  • Fair R. J., Yitzhak T., 2014. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Medicin. Chem. 6, 25-64.
  • Fiett J., Baraniak A., Mrówka A., Fleischer M., Drulis-Kawa Z., Naumiuk Ł., Samet A., Hryniewicz W., Gniadkowski M., 2006. Molecular Epidemiology of Acquired-Metallo-β-Lactamase-Producing Bacteria in Poland. Antimicrob. Agents Chemother. 50, 880-886.
  • Fleming A., 1999. Penicillin, Nobel lecture 1945. [W:] Nobel Lectures, Physiology or Medicine 1942-1962. Strandell B. (red.). World Scientific Publishing Co. Pte. Ltd., 83-93.
  • Fonseca E. L., Marin M. A., Encinas F., Vicente A. C., 2015. Full characterization of the integrative and conjugative element carrying the metallo-β-lactamase blaSPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J. Antimicrob. Chemother. 70, 2547- 2550.
  • Frost L. S., Leplae R., Summers A. O., Toussaint A., 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722-32.
  • Galloway D. R., 1991. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol. Microbiol. 10, 2315-2321.
  • García-Contreras R., Pérez-Eretza B., Lira-Silva E., Jasso-Chávez R., Coria-Jiménez R., Rangel-Vega A., Maeda T., Wood T. K., 2014. Gallium induces the production of virulence factors in Pseudomonas aeruginosa. Pathog. Dis. 70, 95-98.
  • Garza-Ramos U., Morfin-Otero R., Sader H. S., Jones R. N., Hernández E., Rodriguez-Noriega E., Sanchez A., Carrillo B., Esparza-Ahumada S., Silva-Sanchez J., 2008. Metallo-β-lactamase gene blaIMP-15 in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob. Agents Chemother. 52, 2943-2946.
  • Girlich D., Naas T., Leelaporn A., Poirel L., Fennewald M., Nordmann P., 2002. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin. Infect. Dis. 34, 603-611.
  • Gniadkowski M., 2001. Evolution and epidemiology of extended-spectrum beta-lactamase (ESBLs) and ESBL-producing microorganisms. Clin. Microbiol. Infect. 11, 597-608.
  • Gooderhamand W. J., Hancock R. E., 2009. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 33, 279-294.
  • Guzvinec M., Izdebski R., Butic I., Jelic M., Abram M., Koscak I., Baraniak A., Hryniewicz W., Gniadkowski M., Tambic Andrasevic A., 2014. Sequence types 235, 111 and 132 predominate among mutlidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob. Agents. Chemother. 58, 6277-6283.
  • Haines A. S., Jones K., Batt S. M., Kosheleva I. A., Thomas C. M., 2007. Sequence of plasmid pBS228 and reconstruction of the IncP-1 alpha phylogeny. Plasmid 58, 76-83.
  • Hedges R. W., Jacob A., 1974. Transposition of ampicillin resistance from RF'4 to other replicons. Mol. Gen. Genet. 132, 31-40.
  • Hong D. J., Bae, I. K., Jang I.-H., Jeong S. H., Kang H. K., Lee K., 2015. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother. 47, 81-97.
  • Ito-Horiyama T., Ishii Y., Ito A., Sato T., Nakamura R., Fukuhara N., Tsuji M., Yamano Y., Yamaguchi K., Tateda K., 2016. Stability of novel siderophore cephalosporin s-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 60, 4384-4386.
  • Jagusztyn-Krynicka E. K., 2012. Molekularne podstawy bakteryjnej patogenezy [W:] Biologia molekularna bakterii. Markiewicz Z., Baj J. (red.) PWN, Warszawa, 510-605.
  • Jovčić B., Lepsanović Z., Begović J., Rakonjac B., Perovanović J., Topisirović L., Kojić M., 2013. The clinical isolate Pseudomonas aeruginosa MMA83 carries two copies of the blaNDM-1 gene in a novel genetic context. Antimicrob. Agents Chemother. 57, 3405-3407.
  • Juan C. B., Moya J. L., Perez O. A., 2006. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob. Agents Chemother. 50, 1780-1787.
  • Kaneko Y., Thoendel M., Olakanmi O., Britigan B. E., Singh P. K., 2007. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117, 877-888.
  • Kazmierczak K. M., Rabine S., Hackel M., McLaughlin R. E., Biedenbach D. J., Bouchillion S. K., Sahm D. F., Bradford P. A., 2015. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60, 1067-1078.
  • Kitao T., Tada T., Tanaka M., Narahara K., Shimojima M., Shimada K., Miyoshi-Akiyama T., Kirikae T., 2012. Emergence of a novel mutlidrug-resistant Pseudomonas aeruginosa strain producing IMP-type metallo-β-lactamases and AAC(6')-Iae in Japan. Int. J. Antimicrob. Agents. 39, 518-521.
  • Klockgether J., Cramer N., Wiehlmann L., Davenport C. F., Tümmler, B., 2011. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2, 150.
  • Kos V. N., Déraspe M., Mclaughlin R. E., Whiteaker J. D., Roy P. H., Alm R. A., Corbeil J., Gardner H., 2015. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob. Agents Chemother. 59, 427-436.
  • Kung V. L., Ozer E. A., Hauser A. R., 2010. The accessory genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 74, 621-641.
  • Lautenbach E., Synnestvedt M., Weiner M. G., Bilker W. B., Vo L., Schein J., Kim W., 2010. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect. Control. Hosp. Epidemiol. 31, 47-53.
  • Lebek G., 1963. Uber die Enstehung mehrfachresistanter Salmonellen. Ein experimenteller Beitrag. Zbl. Bakt., Abt. I, Orig. 188, 494-499.
  • Levy S. B., Marshall B., 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, 122-129.
  • Li H., Luo Y. F., Williams B. J., Blackwell T. S., Xie C. M., 2012. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to a novel therapies. Int. J. Med. Mocrobiol. 302, 63-68.
  • Libisch B., Poirel L., Lepsanovic Z., Mirovic V., Balogh B., Paszti J., Hunyadi Z., Dobak A., Fuzi M., Nordmann P., 2008. Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Immunol. Med. Microbiol. 54, 330-338.
  • Lister P. D., Wolter D. J., Hanson N. D., 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582-610.
  • Livermore D. M., 1995. Beta-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557-584.
  • Livermore D. M., 1998. Beta-lactamase-mediated resistance and opportunities for its control. J Antimicrob. Chemother. 41, 24-41.
  • Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbath S., Kahlmeter G., Olsson-Liljequist B., Paterson D. L., Rice L. B., Stelling J., Struelens M. J., Vatopoulos A., Weber J. T., Monnet D. L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international export proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268-281.
  • Marchiaro P. M., Brambilla L., Moran-Barrio J., Revale S., Pasteran F., Vila A. J., Viale A. M., Limansky A. S., 2014. The complete nucleotide sequence of the carbapenem resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain reveals a chimeric design formed by modules derived from both environmental and clinical bacteria. Antimicrob. Agents Chemother. 58, 1816-1821.
  • Markiewicz Z., 2012. Budowa i funkcje komórki bakteryjnej [W:] Biologia molekularna bakterii. Markiewicz Z., Baj J. (red.). PWN, Warszawa, 26-131.
  • Markiewicz Z., Kwiatkowski Z. A., 2012. Bakterie, antybiotyki, lekooporność. PWN, Warszawa.
  • Mathee K., Narasimhan G., Valdes C., Qiu X., Matewish J. M., Koehrsen M., Rokas A., Yandava C. N., Engels R., Zeng E., Olavarietta R., Doud M., Smith R.S., Montgomery P., White J. R., Godfrey P. A., Kodira C., Birren B., Galagan J. E., Lory S., 2008. Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl. Acad. Sci. USA 105, 3100-3105.
  • Matsumoto T., 2014. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negaitve pathogens. Clin. Pharmocol. 6, 139-148.
  • Medeiros A. A., 1997. Evolution and Dissemination of β-lactamases Accelerated by Generations of β-lactam Antibiotics. Clin. Infect. Dis. 24, 19-45.
  • Mislin G. L. A., Schalk I. J., 2014. Siderophore-dependent iron uptake systems as gates for antibiotic trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6, 408-420.
  • Nakaya R., Nakamura A., Murata Y., 1960. Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. 3, 654-659.
  • Nemec A., Krizova L., Maixnerova M., Musilek M., 2010. Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res. Microbiol. 161, 234-242.
  • Nordmann P., Ronco E., Naas T., Duport C., Michel-Briand Y., Labia R., 1993. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37, 962- 969.
  • Oliver A., Mulet X., Lopez-Causape C., Juan C., 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 21-22, 41-59.
  • Ozer E. A., Allen J., Hauser A. R., 2014. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 15, 737.
  • Page M. G. P., Bush K., 2014. Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: is the future promising? Curr. Opin. Pharmacol. 18, 91- 97.
  • Philippon L. N., Naas T., Bouthors A. T., Barakett V., Nordmann P., 1997. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41, 2188-2195.
  • Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo J. D., Nordmann P., 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44, 891-897.
  • Poirel L., Girlich D., Naas T., Nordmann P., 2001. OXA-28, an Extended-Spectrum Variant of OXA-10 β-Lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob. Agents Chemother. 45, 447-453.
  • Poirel L., NAAS T., Nordmann P., 2010. Diversity, epidemiology, and genetics of class d β-lactamases. Antimicrob. Agents Chemother. 54, 24-38.
  • Poole K., 2005. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49, 479-487.
  • Poole K., 2011. Pseudomonas aeruginosa - resistance to the max. Front. Microbiol. 65, 1-13.
  • Potron A., Poirel L., Nordmann P., 2015. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 45, 568-585.
  • Ramirez-Estrada S., Borgatta B., Rello J., 2016. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect. Drug Resist. 9, 7-18.
  • Rahman M., Prasad K. N., Pathak A., Pati B. K., Singh A., Ovejero C. M., Ahmad S., Gonzalez-Zorn B., 2015. RmtC and RmtF 16S rRNA methyltransferase in NDM-1-producing Pseudomonas aeruginosa. Emerg. Infect. Dis. 21, 2059-2062.
  • Riera E., Cabot G., Mulet X., Garcia-Castillo M., Del Campo R., Juan C., Canton R., Oliver A., 2011. Pseudomonas aeruginosa carbapenems resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J. Antimicrob. Chemother. 66, 2022-2027.
  • Rodríguez-Martínez J. M., Poirel L., Nordmann P., 2009. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53, 1766-1771.
  • Russell A. B., Peterson S. B., Mougous J. D., 2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137-148.
  • Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G., 2002. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. J Bacteriol, 184, 1140-1154.
  • Schurek K. N., Breidenstein E. B. M., Hancock R. E. W., 2012. Pseudomonas aeruginosa: A persistent pathogen in cystic fibrosis and hospital-associated infections. [W:] Antibiotic Discovery and Development. Dougherty T. J., Pucci M. J. (red.). Springer, 679- 715.
  • Schaefer B., 2014. Natural Products in Chemical Industry. Springer, Berlin Heidelberg.
  • Sordé R., Pahissa A., Rello J., 2011. Management of refractory Pseudomonas aeruginosa infection in cystic fibrosis. Infect. Drug Resist. 4, 31-41.
  • Sevastsyanovich Y. R., Krasowiak R., Bingle L. E. H., Haines A. S., Sokolov S. L., Kosheleva I. A., Leuchuk A. A., Titok M. A., Smalla K., Thomas C. M., 2008. Diversity of IncP-9 plasmids of Pseudomonas. Microbiology 154, 2929-2941.
  • Stokes H. W., Hall R. M., 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 12, 1669-1683.
  • Stokes H. W., Gillings M. R., 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistant genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790-819.
  • Strateva T., Yordanov D., 2009. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133-1148.
  • Taneja N., Kaur H., 2016. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria. Microbiol. Insights 20, 9-19.
  • Tomaras A. P., Mcpherson T. C. J., Kuhn M., Carifa A., Mullins L., George D., Desbonnet C., Eidem T. M., Montgomery J. I., Brown M. F., Reilly U., Miller A. A., O'donnell J. P., 2014. LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid a biosynthesis in Gram-negative pathogens. mBio 5, e01551-14.
  • Vilacoba E., Quiroga C., Pistorio M., Famiglietti A., Rodríguez H., Kovensky J., Deraspe M., Raymond F., Roy P. H., Centrón D., 2014. A blaVIM-2 plasmid disseminating in extensively drug-resistant clinical Pseudomonas aeruginosa and Serratia marcescens isolates. Antimicrob. Agents Chemother. 58, 7017-7018.
  • Villavicencio R. T., 1998. The history of blue pus. J. Coll. Surg. 187, 212-216.
  • Vincent J. L., 2003. Nosocomial infections in adult intensive-care units. Lancet 361, 2068-77.
  • Wagner S., Sommer R., Hinsberger S., Lu C., Hartmann R. W., Empting M., Titz A., 2016. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J. Med. Chem. http://pubs.acs.org/doi/ipdf/10.1021/acs.jmedchem.5b01698.
  • Walsh T. R., Toleman M. A., Poirel L., Nordmann P., 2005. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18, 306-325.
  • Watanabe T. T., Fukusawa T., 1960. 'Resistance transfer factor' on episome in Enterobacteriaceae. Biochem. Biophys. Res. Comm. 3, 87-115.
  • Wei Q., Ma L. Z., 2013. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 14, 20983-21005.
  • Westritschnig K., Hochreiter R., Wallner G., Firbas C., Schwameis M., Jilma B., 2014. A randomized, placebo-controlled phase I study assessing the safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein OprF/I vaccine (IC43) in healthy volunteers. Hum. Vaccin. Immunother. 10, 170-183.
  • Wolska I. K., Grudniak M. A., Kraczkiewicz-Dowjat A., Kurek A., 2010. Różnorodne funkcje wybranych pigmentów bakteryjnych. Post. Mikrobiol. 40, 105-114.
  • Xiong J., Alexander D. C., Ma J. H., Déraspe M., Low D. E., Jamieson F. B., Roy P. H., 2013. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob. Agents Chemother. 57, 3775-3782.
  • Zincke D., Balasubramanian D., Silver L. L., Mathee K., 2016. Characterization of a carbapenem-hydrolyzing enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 60, 936-945.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv66p11kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.