Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 65 | 3 | 463-468

Article title

Życie w społeczności - warunki powstawania biofilmu

Content

Title variants

EN
Live in the community - biofilm formation

Languages of publication

PL EN

Abstracts

PL
Wszystkie organizmy żywe podlegają wpływom innych organizmów wykazując różnego rodzaju zachowania społeczne. Mikroorganizmy nie są wyjątkiem. Komórki bakterii wolno żyjących (planktonicznych) są w stanie nie tylko wydzielać związki sygnałowe ale także mogą je odbierać. Proces komunikacji bakterii opierający się na tego typu sygnałach chemicznych jest szczególnie ważny w wielokomórkowych strukturach, jakie mogą tworzyć bakterie, czyli biofilmach. Takie społeczności bakteryjne są w stanie wzrastać w wielu środowiskach biotycznych jak i abiotycznych, niejednokrotnie w warunkach ekstremalnych. Proces komunikacji pomiędzy komórkami jest bardzo ważny, umożliwia nie tylko dzielenie się funkcjami fizjologiczno-metabolicznymi, ale również sprzyja ewolucji bakterii wskutek horyzontalnego transferu genów.
Istotne jest poznanie nie tylko sposobu komunikacji pomiędzy mikroorganizmami, ale także warunków w jakich może zachodzić oraz procesów metabolicznych, którymi może ona sterować.
EN
All living organisms interact with each other and may exhibit cooperative behavior. Bacteria are not an exception. Free-living cells (planctonic cells) are able to communicate to each other by using specific types of chemical compounds. Such communication processes between bacterial cells are particularly important in multicellular structures, referred to as biofilms. Those structures are able to grow both in biotic and abiotic environments, in many cases even in very extreme conditions. The cell-communication processes are so important in bacterial biofilms for they provide sharing of physiological and metabolic functions between different species and thus stimulation of horizontal gene transfer that leads to bacterial evolution. Therefore, of importance is not only discovery and understanding of the communication system between microorganisms, but also of the conditions in which they may occur and influence cellular metabolic processes.

Journal

Year

Volume

65

Issue

3

Pages

463-468

Physical description

Dates

published
2016

Contributors

author
  • Uniwersytet Przyrodniczy w Poznaniu, Wydział Rolnictwa i Bioinżynierii, Katedra Mikrobiologii Ogólnej i Środowiskowej, Szydłowska 50, 60-655 Poznań, Polska
  • Poznan University of Life Sciences, Faculty of Agronomy and Bioengineering, Department of Genaral and Environmental Microbiology, Szydłowska 50, 60-655 Poznań, Poland
author
  • Uniwersytet Przyrodniczy w Poznaniu, Wydział Rolnictwa i Bioinżynierii, Katedra Mikrobiologii Ogólnej i Środowiskowej, Szydłowska 50, 60-655 Poznań, Polska
  • Poznan University of Life Sciences, Faculty of Agronomy and Bioengineering, Department of Genaral and Environmental Microbiology, Szydłowska 50, 60-655 Poznań, Poland
  • Uniwersytet Przyrodniczy w Poznaniu, Wydział Rolnictwa i Bioinżynierii, Katedra Biochemii i Biotechnologii, Dojazd 11, 60-632 Poznań, Polska
  • Poznan University of Life Sciences, Faculty of Agronomy and Bioengineering, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznań, Poland

References

  • Bjarnsholt T., 2013. The role of bacterial biofilms in chronic infections. Acta Pathol. Microbiol. Immunol. Scand. 121 (Suppl. 136), 1-51.
  • Bond P. L., Druschel G. K., Banfield J. F., 2000a. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol. 66, 4962-4971.
  • Bond P. L., Smriga S. P., Banfield J. F., 2000b. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 3842-3849.
  • Bordi Ch., De Bentzmann S., 2011. Hacking into bacterial biofilms: a new therapeutic challenge. Ann. Intens. Care 1, 1-19.
  • Dimitriu T., Lotton C., Benard-Capelle J., Misevic D., Brown S. P., Lindner A. B., Taddei F., 2014. Genetic information transfer promotes cooperation in bacteria. Proc. Natl. Acad. Sci. 111, 11103-11108.
  • Drewniak L., Styczek A., Majder-Lopatka M., Sklodowska A., 2008. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ. Pollut. 156, 1069-1074.
  • Drewniak L., Matlakowska R., Rewerski B., Sklodowska A., 2010. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 104, 437-442.
  • Druschel G. K., 1999. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem. Transact. 5, 13.
  • Elias S., Banin E., 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990-1004.
  • Ezeuko C. C., Sen A., Gates I. D., 2013. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems. Microb. Biotechnol. 6, 53-66.
  • Federle M. J., Bassler B. L., 2003. Interspecies communication in bacteria. J. Clin. Investig. 112, 1291-1299.
  • Gonzalez-Toril E., Llobet-Brossa E., Casamayor E. O., Amann R., Amils R., 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol. 69, 4853-4865.
  • Hall-Stoodley L., Costerton J. W., Stoodley P., 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95-108.
  • Hammer B. K., Bassler B. L., 2003. Quorum sensing controls biofilm formation in Vibrio cholerae: Biofilms in V. cholerae. Mol. Microbiol. 50, 101-104.
  • Jiao Y., D'haeseleer P., Dill B. D., Shah M., Verberkmoes N. C., Hettich R. L., Banfield J. F., Thelen M. P., 2011. Identification of biofilm matrix-associated proteins from an acid mine drainage microbial community. Appl. Environ. Microbiol. 77, 5230-5237.
  • Johnson D. B., 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307-317.
  • Kishen A., Haapasalo M., 2012. Biofilm models and methods of biofilm assessment. Endodont. Topics 22, 58-78.
  • Kołwzan B., 2011. Analiza zjawiska biofilmu-warunki jego powstawania i funkcjonowania. Ochrona środowiska 33, 3-14.
  • Lear G., Niyogi D., Harding J., Dong Y., Lewis G., 2009. Biofilm bacterial community structure in streams affected by acid mine drainage. Appl. Environ. Microbiol. 75, 3455-3460.
  • Leggett H. C., Brown S. P., Reece S. E., 2014. War and peace: social interactions in infections. Philosoph. Transact. Royal Soc. B: Biol. Sci. 369, 20130365-20130365.
  • Li Y.-H., Tang N., Aspiras M. B., Lau P. C. Y., Lee J. H., Ellen R. P., Cvitkovitch D. G., 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699-2708.
  • Miller M. B., Bassler B. L., 2001. Quorum sensing in bacteria. Ann. Rev. Microbiol. 55, 165-199.
  • Narváez-Zapata J. A., Rodríguez-Ávila N., Ortega-Morales B. O., 2005. Method for recovery of intact DNA for community analysis of marine intertidal microbial biofilms. Mol. Biotechnol. 30, 51-55.
  • O'toole G., Kaplan H. B., Kolter R., 2000. Biofilm formation as microbial development. Ann. Rev. Microbiol. 54, 49-79.
  • Pamp S. J., Sternberg C., Tolker-Nielsen T., 2009. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75A, 90-103.
  • Pratt L. A., Kolter R., 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285-293.
  • Raji A. I., Möller C., Litthauer D., Van Heerden E., Piater L. A., 2008. Bacterial diversity of biofilm samples from deep mines in South Africa. Biokemistri 20, 53-62.
  • Rolfs A., Schuller I., Finckh U., Weber-Rolfs I., 1992. PCR: Clinical Diagnostics and Research. Springer Lab Mannuals.
  • Römling U., Balsalobre C., 2012. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272, 541-561.
  • Schauder S., Shokat K., Surette M. G., Bassler B. L., 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463-476.
  • Stanley N. R., Lazazzera B. A., 2004. Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. 52, 917-924.
  • Tolker-Nielsen T., Molin S., 2000. Spatial organization of microbial biofilm communities. Microb. Ecol. 40, 75-84.
  • Waters Ch. M., Bassler B. L., 2005. Quorum sensing: cell-to-cell communication in bacteria. Ann. Rev. Cell Develop. Biol. 21, 319-346.
  • Wu J., Xi C., 2009. Evaluation of Different Methods for Extracting Extracellular DNA from the Biofilm Matrix. Appl. Environ. Microbiol. 75, 5390-5395.
  • Yang Y., Shi W., Wan M., Zhang Y., Zou L., Huang J., Qiu G., Liu X., 2008. Diversity of bacterial communities in acid mine drainage from the Shen-bu copper mine, Gansu province, China. Electr. J. Biotechnol. 11, 1-12.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv65p463kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.