Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 65 | 3 | 433-443

Article title

Nicienie entomopatogeniczne - modelowe organizmy w badaniach oddziaływań symbiont-gospodarz oraz pasożyt-żywiciel

Content

Title variants

EN
Entomopathogenic nematodes as model organism in research of host-symbiont and host-parasite interactions

Languages of publication

PL EN

Abstracts

PL
Interesującym przykładem zależności mutualistycznej są nicienie entomopatogeniczne (EPN). Nicienie rodzajów Steinernema i Heterorhabditis wraz z ich symbiotycznymi bakteriami charakteryzują się bardzo wysoką wirulencją w stosunku do larw owadów. Ta cecha sprawiła, że są stosowane w rolnictwie jako biopreparat, alternatywa lub uzupełnienie dla tradycyjnych metod ochrony roślin. Próby wykorzystywania EPN w walce ze szkodnikami stały się impulsem dla szerszych badań nad ich biologią i ekologią. EPN maja szczególną cechę, ponieważ są zakażone tylko jednym gatunkiem bakterii symbiotycznych tworząc pary Steinernema/Xenorhabdus i Heterorhabditis/Photorhabdus. Nicienie oraz ich symbionty mogą być również hodowane osobno w warunkach laboratoryjnych na sztucznych pożywkach. Taki układ pozwala na badanie wzajemnych relacji, umożliwia pogłębienie wiedzy na temat biologii układu symbiont-gospodarz oraz pozwala na wykorzystanie tej wiedzy w praktyce. W prezentowanej pracy opisuję biologię EPN i ich symbiontów podczas inwazji żywiciela, przedstawiam wybrane mechanizmy pozwalające na efektywną kooperację pomiędzy symbiontem a gospodarzem oraz przykłady badań prowadzonych na nicieniach pozbawionych symbiontów. Nicienie entomopatogeniczne wraz z ich bakteriami symbiotycznymi tworzą skomplikowany i bardzo czuły układ pozwalający na niezwykle efektywne zasiedlanie kolejnych żywicieli. Możliwości hodowania nicieni symbiotycznych, nicieni pozbawionych symbiontów oraz bakterii symbiotycznych w warunkach laboratoryjnych, a dodatkowo krótki cykl życiowy, wysoka płodność oraz łatwość modyfikacji genetycznych bakterii i nicieni pozwala na stosowanie ich jako organizmu modelowego w badaniach m.in. mutualizmu i pasożytnictwa.
EN
This work presents a short description of host-symbiont relation in entomopathogenic nematodes (EPN) from genus Steinernema and Heterorhabditis and their symbiotic bacteria from genus Xenorhabdus and Photorhabdus, respectively. EPN are highly virulent to insects, so that they are used as a biocontrol agent. EPN are also used as model organisms in studies on host-parasite and host - symbiont interactions. Bacteria are the only symbiont of EPN. Nematodes and their symbionts can be cultivated in laboratory conditions on artificial media. This feature is very useful for examining relations between a host and its symbiont.

Journal

Year

Volume

65

Issue

3

Pages

433-443

Physical description

Dates

published
2016

Contributors

  • Instytut Nauk o Środowisku, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Institute of Environmental Science, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, poland

References

  • Adams B. J., Fodor A., Koppenhofer H. S., Stackenbrandt E., Stock S. P., Klein M. G., 2006. Biodiversity and systematic of nematode-bacterium entomopathogens. Biol. Contr. 38, 4-21.
  • Adams B. J., Peat S. M., Dillman A. R., 2007. Phylogeny and evolution. [W:] Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nguyen K. B., Hunt D. J. (red.). Nematology Monographs and Perspectives 5, Koninklijke Brill NV, Leiden, 693-733.
  • Bai X., Adams B. J., Ciche T., Clifton S., Gaugler R., Kim K. S., Spieth J., Sternberg P. W., Wilson R. K., Grewal P. S., 2013. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 8, 1-13.
  • Baur M. E., Kaya H. K., Strong D. R., 1998. Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biol. Contr. 12, 231-236.
  • Blaxter M. L., De Ley P., Garey J. R., Liu L. X., Scheldeman P. i współaut., 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71-75.
  • Boemare N. E., Akhust R. J., Mourant R. G., 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43, 249-255.
  • Brivio M. F., Mastore, M., Moro M., 2004. The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions. Mol. Biochem. Parasitol. 135, 111-121.
  • Busby J. N., Landsberg M. J., Simpson R. M., Jones S. A., Hankamer B., Hurst M. R. H., Lott J. S., 2012. Structural analysis of Chi1 chitinase from Yen-Tc: The multisubunit insecticidal ABC toxin complex of Yersinia entomophaga. J. Mol. Biol. 415, 359-371.
  • Cabral C. M.,Cherqui A., Pereira A.,Simões N., 2004. Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Appl. Eviron. Microbiol. 70, 3831-3838.
  • Campos-Herrera R., Barbercheck M., Hoy C. W., Stock S. P., 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J. Nematol. 44, 162-176.
  • Campos-Herrera R., Gutiérrez C., 2014. Steinernema feltiae intraspecific variability: infection dynamics and sex-ratio. J. Nemtaol. 46, 35-43.
  • Castagnola A., Stock S. P., 2014. Common virulence factors and tissue targets of Entomopathogenic bacteria for biological control of Lepidopteran pests. Insects 5, 139-166.
  • Castillo J. C., Reynolds S. E., Eleftherianos I., 2011. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537-547.
  • Chapuis E., Emelianoff V., Paulmier V., Le Brun N., Pagès S., Sicard M., Ferdy J.-B., 2009. Manifold aspects of specificity in a nematode-bacterium mutualism. J. Evolut. Biol. 22, 2104-2117.
  • Chapuis E., Pagès S., Emelianoff V., Givaudan A., Ferdy J.-B., 2011. Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila. PLoS One 6, 1-11.
  • Chapuis E., Arnal A., Ferdy J.-B., 2012. Trade-offs shape the evolution of the vector-borne insect pathogen Xenorhabdus nematophila. Proc. Royal Soc. B, Biol. Sci. 279, 2672-2680.
  • Chaston J. M., Suen G., Tucker S. L., Andersen A. W., Bhasin A., Bode E., Bode H. B., Brachmann A. O., Cowles C. E., Cowles K. N., Darby C., de Léon L. i współaut., 2011. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 6, e27909.
  • Chaston J. M.,Murfin K. E., Heath-Heckman E. A., Goodrich-Blair H., 2013. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes. Cell. Microbiol. 15, 1545-1559.
  • Ciche T. A., Darby C., Ehlers R.-U., Forst S., Goodrich-Blair H., 2006. Dangerous liaisons: The symbiosis of entomopathogenic nematodes and bacteria. Biol. Cont. 38, 22-46.
  • De Ley P. A., 2006. A quick tour of nematode diversity and the backbone of nematode phylogeny.WormBook (http://www.wormbook.org).
  • Dillman A. R., Chaston J. M., Adams B. J., Ciche T., Goodrich-Blair H., Stock S. P., Sternberg P. W., 2012. An entomopathogenic nematode by any other name. PLoS Pathogens 8, e1002527.
  • Easom C., Joyce S., Clarke D., 2010. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol. 10, 45.
  • Ehlers R.-U., 2001. Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 56, 623-633.
  • Ehlers R.-U., 2007. Entomopathogenic Nematodes: from science to commercial use. [W:] Biological Control: a Global Perspective. Vincent C., Goettel M., Lazarovits G. (red.). CAB International, 136-151.
  • Eleftherianos I., French-Constant R. H., Clarke D. J., Dowling A. J., Reynolds S. E., 2010. Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol. 18, 552-560.
  • Emelianoff V., Chapuis E., Le Brun N., Chiral M., Moulia C., Ferdy J.-B., 2007. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Parasitol. Res. 100, 657-659.
  • Emelianoff V., Chapuis E., Le Brun N., Chiral M., Moulia C., Ferdy J.-B., 2008. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evol. Int. J. Org. Evol. 62, 932-942.
  • Ferris H., Bongers T., De Goede R. G. M., 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13-29.
  • Ferris H., Griffiths B. S., Porazinska D. L., Powers T. O., Wang K.-H., Tenuta M., 2012. Reflections on plant and soil nematode ecology: past, present and future. J. Nematol. 44, 115-126.
  • Forst S., Nealson K., 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol. Rev. 60, 21-43.
  • Gaugler R., McGuire T., Campbell J., 1989. Genetic variability among strains of the entomopathogenic nematode Steinernema feltiae. J. Nematol. 21, 247-253.
  • Goodrich-Blair H., Clarke D. J., 2007. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbial. 64, 260-268.
  • Grewal P. S., Wang X., Taylor R. A. J., 2002. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int. J. Parasitol. 32, 717-725.
  • Griffin C. T., Downes M. J., 1991. Low temperature activity in Heterorhabditis sp. (Nematoda: Heterorhabditae). Nematologica 37, 83-91.
  • Gulcu B., Hazir S., Kaya H., 2012. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J. Invertebr. Pathol. 110, 326-333.
  • Hammond P. M., Hawksworth D. L., Kalin-Arroyo M. T., 1995. Magni- tude and distribution of biodiversity: 3.1. The current magnitude of biodiversity. [W:] Global Biodiversity Assessment. Heywood V. H. (red.). Cambridge University Press, Cambridge, UK, 113-138.
  • Han R., Ehlers R.-U., 1999. Pathogenicity, Development, and reproduction of Heterorhabditis bacteriophora and Stainernema carpocapsae under Axenix in vivo conditions. J. Invertebr. Pathol. 75, 55-58.
  • Hazir S., Stock S. P., Kaya H. K., Koppenhöfer M., Keskin N., 2001 Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77, 243-250.
  • Lambshead P. J. D., 1993. Recent developments in marine benthic biodiversity research. Oceanis 19, 5-24.
  • Lavine M. D., Strand M. R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-309.
  • Lee M.-M., Stock S. P., 2010. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (γ-Proteobacteria: Enterobacteriaceae). Syst. Parasitol. 77, 1-12.
  • Leulier F., Parquet C., Pili-Floury S., Ryu J. H., Caroff M., Lee W. J., 2003. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484.
  • Maneesakorn P., An R., Daneshvar H., Taylor K., Bai X., Adams B. J., Grewal P. S., Chandrapatya A., 2011. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Mol. Phylogenet. Evol. 59, 271-280.
  • Martens E. C., Russell F. M., Goodrich-Blair H., 2005. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization. Mol. Microbial. 58, 28-45.
  • Mitani D., Kaya H., Goodrich-Blair H., 2004. Comparative study of the entomopathogenic nematode, Steinernema carpocapsae, reared on mutant and wild-type Xenorhabdus nematophila. Biol. Cont. 29, 382-391.
  • Murfin K. E., Dillman A. R., Foster J. M., Bulgheresi S. S., Barton E., Sternberg P. W., Goodrich-Blair H., 2013. Nematode-bacterium symbioses - cooperation and conflict revealed in the 'Omics' age. Biol. Bull. 223, 85-102.
  • Nadler S. A., Bolotin E., Stock S. P., 2006. Phylogenetic relationships of Steinernema (Cephalobina, Steinernematidae) based on nuclear, mitochondrial, and morphological data. Syst. Parasitol. 63, 159-179.
  • Nielsen-LeRoux C., Gaudriault S., Ramarao N., Lereclus D., Givaudan A., 2012. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr. Opin. Microbial. 15, 220-231.
  • Nguyen K. B., Maruniak J., Adams B. J., 2001. Diagnostic and phylogenetic utility of the rDNA internal transcribed spacer sequences of Steinernema. J. Nematol. 33, 73-82.
  • Park J.-J., Jagdale G. B., Cho K., Grewal P. S., Hoy C. W., 2014. Spatial association between entomopathogenic and other free-living nematodes and the influence of habitat. Appl. Soil Ecol. 76, 1-6.
  • San Blas E., 2013. Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980-2010. Biol. Contr. 66, 102-124.
  • Salame L., Glazer I., Miqaia N., Chkhubianishvili T., 2010. Characterization of populations of entomopathogenic nematodes isolated at diverse sites across Israel. Phytoparasitica 38, 39-52.
  • Seenivansan N., Sivakumar M., 2013. Screening for environmental stress-tolerant entomopathogenic nematodes virulent against cotton bollworms. Phytoparasitica 42, 165-177.
  • Shapiro-Ilian D. I., Stuart R. J., McCoy C. W., 2003. Comparison of beneficial traits among strains of the entomopathogenic nematode, Steinernema carpocapsae, for control of Curculio caryae (Coleoptera: Curculionidae). Biol. Contr. 28, 129-136.
  • Sicard M., Le Brun N., Pages S., Godelle B., Boemare N., Moulia C., 2003. Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Parasitol. Res. 91, 520-524.
  • Sicard M., Brugirard-Ricaud K., Lanois A., Boemare N. E., Pages S., Brehe M., Givaudan A., 2004. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Appl. Environ. Microbiol. 70, 6473-6480.
  • Sicard M., Ferdy J.-B., Pagès S., Le Brun N., Godelle B., Boemare N., Moulia C., 2004. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J. Evol. Biol. 17, 9885-9893.
  • Sicard M., Ramone H.,Le Brun N., Moulia C., 2005. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Die Naturwissenschaften 92, 472-476.
  • Sicard M., Raimond M., Prats O., Lafitte A., Braquart-Varnier C., 2008. Pathogenic effect of entomopathogenic nematode-bacterium complexes on terrestrial isopods. J. Invertebr. Pathol. 99, 20-27.
  • Snyder H., Stock S. P., Kim S.-K., Flores-Lara Y., Forst S., 2007. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Appl. Environ. Microbiol. 73, 5338-5346.
  • Spiridonov S. E., Reid A. P., Podrunka K., Subbotin S. A., Moens M., 2004. Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology 6, 547-566.
  • Stock S. P., Campbell J. F., Nadler S. A., 2001. Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characteristics. J. Parasitol. 87, 877-889.
  • Tailliez P., Pagès S., Ginibre,N., Boemare N., 2006. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. System. Evol. Microbiol. 56, 2805-2818.
  • Tailliez P., Laroui C., Ginibre N., Paule A., Pagès S., Boemare N., 2010. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. l. Int. J. System. Evol. Microbiol. 60, 1921-1937.
  • Wright P. J., 1992. Cool temperature reproduction of steinerne-matid and heterorhabditid nematodes. J. Invertebr. Pathol. 60, 148-151.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv65p433kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.