Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 65 | 3 | 419-431

Article title

Wybrane aspekty adaptacji roślin do warunków niedoboru fosforu w środowisku glebowym

Content

Title variants

EN
Some aspects of plants adaptations to phosphorus deficiency in the soil environment

Languages of publication

PL EN

Abstracts

PL
Wiele gleb, także uprawnych, charakteryzuje się bardzo niskim stężeniem rozpuszczonych w roztworze glebowym jonów fosforanowych, które są jedyną formą fosforu pobieraną przez rośliny. Jednocześnie, znaczną pulę fosforu glebowego stanowią organiczne formy tego pierwiastka, a dodatkowo duża frakcja fosforanów immobilizowana jest przez składniki gleby. Z tego powodu rośliny wykształciły wiele przystosowań ułatwiających im wydajne korzystanie z ograniczonych zasobów fosforu glebowego. Są to m.in. zmiany w budowie systemu korzeniowego mające na celu zwiększenie jego powierzchni chłonnej, tworzenie relacji symbiotycznych z grzybami mikoryzowymi, wzrost aktywności lub ilości białek odpowiedzialnych za pobieranie fosforanów z gleby, a także wydzielanie przez korzenie enzymów i kwasów organicznych, które uwalniają fosforany z obecnych w glebie związków organicznych i nieorganicznych. Celem niniejszej pracy jest omówienie wspomnianych przystosowań.
EN
Inorganic phosphates are the only form of phosphorus which plants can take up. Unfortunately, in most soils, including agricultural soils, concentration of phosphate ions in soil solutions is very low. On the other hand, considerable part of soil phosphorus pool is present in the form of phosphoroorganic compounds and a great fraction of phosphates is immobilized by soil particles. For these reasons, plants have developed many adaptations which facilitate more efficient use of the limited soil phosphates sources. These adaptations include changes in the root system architecture to enlarge the sorption area, formation of mycorrhizal associations, increase of activity or abundance of proteins responsible for phosphate ions uptake, as well as secretion of enzymes and organic acids which release phosphate ions from organic and inorganic phosphorous compounds. The goal of this paper is to outline the current state of knowledge about these adaptations.

Journal

Year

Volume

65

Issue

3

Pages

419-431

Physical description

Dates

published
2016

Contributors

  • Zakład Fizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej, Wydział Nauk Biologicznych, Uniwersytet Wrocławski, Kanonia 6/8, 50-328 Wrocław, Polska
  • Department of Plant Molecular Physiology, Institute of Experimental Biology, Faculty of Biological Siences, Universyty of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland

References

  • Abrahão A., Lambers H., Sawaya A. C., Mazzafera P., Oliveira R. S., 2014. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176, 345-355.
  • Adamczyk B., Godlewski M., 2010. Różnorodność strategii pozyskiwania azotu przez rośliny. Kosmos 59, 211-222.
  • Ayadi A., David P., Arrighi J.F., Chiarenza S., Thibaud M. C., Nussaume L., Marin E., 2015. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiol. 167, 1511-1526.
  • Baker A., Ceasar S. A., Palmer A. J., Paterson Jb, Q. I. W, Muench S. P., Baldwin S. A., 2015. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J. Exp. Bot. 66, 3523-3540.
  • Bączek-Kwinta B., 2015. Korzenie-szczotki, liście na baczność, echolokacja - jak szczegóły budowy zewnętrznej pozwalają roślinom na dostosowanie się do środowiska. Kosmos 308, 485-499.
  • Becquer A., Trap J., Irshad U., Ali M. A., Claude P., 2014. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front. Plant Sci. 5, 548.
  • Bhardwaj D., Ansari M. W., Sahoo R. K., Tuteja N., 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13, 66.
  • Bucher M., 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173, 11-26.
  • Buscot F., 2015. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J. Plant. Physiol. 172, 55-61.
  • Chevalier F., Pata M., Nacry P., Doumas P., Rossignol M., 2003. Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 26, 1839-1850.
  • Ciereszko I., 2005. Czy można usprawnić pobieranie fosforu przez rośliny? Kosmos 54, 391-400.
  • Czerwiński W., 1976. Fizjologia roślin. Polskie Wydawnictwo Naukowe, Warszawa.
  • González-Muñoz E., Avendaño-Vázquez A. O., Montes R. A., De Folter S., Andrés-Hernández L., Abreu-Goodger C., Sawers R. J., 2015. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Front. Plant Sci. 6, 341.
  • Grimal J. Y., Frossard E., Morel J. L., 2001. Maize root mucilage decreases adsorption of phosphate on goethite Biol. Fertil. Soils 33, 226-230.
  • Gu M., Chen A., Dai X., Liu W., Xu G., 2011. How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav. 6, 1300-1304.
  • Hocking P. J., Jeffery S., 2004. Cluster-root production and organic anion exudation in a group of old-world lupins and a new-world lupin. Plant Soil 258, 135-150.
  • Javot H., Pumplin N., Harrison M. J., 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 30, 310-322.
  • Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J. M., 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1-16.
  • Jia H., Ren H., Gu M., Zhao J., Sun S., Zhang X., Chen J., Wu P., Xu G., 2011. The Phosphate Transporter Gene OsPht1;8 Is Involved in Phosphate Homeostasis in Rice. Plant Physiol. 156, 1164-1175.
  • Lambers H., Shane M. W., 2007. Role of root clusters in phosphorus acquisition and increasing biological diversity in agriculture. [W:] Scale and complexity in plant systems research: gene-plant-crop relations. Spiertz J. H. J., Struik P. C. van Laar H. H. (red.). Springer, New York, 237-250.
  • Lambers H., Shane M. W., Cramer M. D., Pearse S. J., Veneklaas E. J., 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 98, 693-713.
  • Lambers H., Chapin III F. S., Pons T. L., 2008. Plant physiological ecology. Springer Science+Business Media LLC, Philadelphia.
  • Lambers H., Bishop J. G., Hopper S. D., Laliberté E., Zúñiga-Feest A., 2012. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann. Bot. 110, 329-348.
  • Lambers H., Martinoia E., Renton M., 2015. Plant adaptations to severely phosphorus-impoverished soils. Curr. Opin. Plant Biol. 25, 23-31
  • Lamont B., 1982. Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot. Rev. 48, 597-689.
  • Lamont B., 2003. Structure, ecology and physiology of root clusters - a review. Plant Soil 248, 1-19.
  • Lamont B., 1974. The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol. 73, 985-996.
  • Li L., Tang C., Rengel Z., Zhang F., 2003. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant Soil 248, 297-303.
  • Li L., Li S. M., Sun J. H., Zhou L. L., Bao X. G., Zhang H. G., Zhang F. S., 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 104, 11192-11196.
  • Liang C., Wang J., Zhao J., Tian J., Liao H., 2014. Control of phosphate homeostasis through gene regulation in crops. Curr. Opin. Plant Biol. 21, 59-66.
  • López-Arredondo D. L., Leyva-González M. A., González-Morales S. I., López-Bucio J., Herrera-Estrella L., 2014. Phosphate nutrition: improving low-phosphate tolerance in crops. Ann. Rev. Plant Biol. 65, 95-123.
  • López-Bucio J., Hernández-Abreu E., Sánchez-Calderón L., Nieto-Jacobo M. F., Simpson J., Herrera-Estrella L, 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 12, 244-256.
  • Manavalan L. P., Prince S. J., Musket T. A., Chaky J., Deshmukh R., Vuong T. D., Song L., Cregan P. B., Nelson J. C., Shannon J. G., Specht J. E., Nguyen H. T., 2015. Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS One 10, e0120490.
  • Misson J., Thibaud M. C., Bechtold N., Raghothama K,. Nussaume L., 2004. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol. Biol. 55, 727-741.
  • Mudge S. R., Rae A. L., Diatloff E., Smith F. W., 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341-353.
  • Nath M., Tuteja N., 2015. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma DOI 10.1007/s00709-015-0845-y.
  • New Zealand Plant Conservation Network. Protokół dostępu: http://www.nzpcn.org.nz/flora_details.aspx?ID=1176; data dostępu: 27.11.2015.
  • Nguyen G. N., Rothstein S. J., Spangenberg G., Kant S., 2015. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front. Plant Sci. 6, 629.
  • Nussaume L., Kanno S., Javot H., Marin E., Pochon N., Ayadi A., Nakanishi T. M., Thibaud M. C., 2011. Phosphate Import in Plants: Focus on the PHT1 Transporters. Front. Plant Sci. 2, 83.
  • Paungfoo-Lonhienne C., Lonhienne T. G., Rentsch D., Robinson N., Christie M., Webb R. I., Gamage H. K., Carroll B. J., Schenk P. M., Schmidt S., 2008. Plants can use protein as a nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. USA 105, 4524-4529.
  • Paungfoo-Lonhienne C., Lonhienne T. G., Mudge S. R., Schenk P. M., Christie M., Carroll B. J., Schmidt S., 2010. DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiol. 153, 799-805.
  • Péret B., Clément M., Nussaume L., Desnos T., 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 16, 442-450.
  • Plassard C., Dell B., 2010. Phosphorus nutrition of mycorrhizal trees. Tree Physiol. 30, 1129-1139.
  • Plaxton W. C., Tran H. T., 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006-1015.
  • Playsted C. W., Johnston M. E., Ramage C. M., Edwards D. G., Cawthray G. R., Lambers H., 2006. Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol. 170, 491-500.
  • Robinson W. D., Park J., Tran H. T., Del Vecchio H. A., Ying S., Zins J. L., Patel K., Mcknight T. D., Plaxton W. C., 2012. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J. Exp. Bot. 63, 6531-6542.
  • Rosenfield C. L., Reed D. W., Kent M. W., 1991. Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L. Plant Physiol. 95, 1120-1124.
  • Schenk G., Mitić N., Hanson G. R., Comba P., 2013. Purple acid phosphatase: A journey into the function and mechanism of a colorful enzyme. Coordin. Chem. Rev. 257, 473-482.
  • Shane M. W., Lambers H., 2005. Cluster roots: a curiosity in context. Plant Soil 274, 101-125.
  • Shane M. W., Cawthray G. R., Cramer M. D., Kuo J., Lambers H., 2006. Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots. Plant Cell Environ. 29, 1989-1999.
  • Shin H., Shin H. S., Dewbre G. R., Harrison M. J., 2004. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629-642.
  • Smith S. E., Smith F. A., 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104, 1-13.
  • Stetter M. G., Schmid K., Ludewig U., 2015 Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana. PLoS One 10, e0120604.
  • Sun S., Gu M,. Cao Y., Huang X,. Zhang X., Ai P., Zhao J., Fan X., Xu G., 2012. A constitutive expressed phosphate transporter, OsPht1;1,modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol. 159, 1571-1581.
  • Tran H. T., Hurley B. A., Plaxton W. C., 2010. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Sci. 179, 14-27.
  • Tran H. T., Qian W., Hurley B. A., She Y. M., Wang D., Plaxton W. C., 2010. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ. 33, 1789-1803.
  • Vance C. P., 2008. Plants without arbuscular mycorrhizae. [W:] The Ecophysiology of Plant-Phosphorus Interactions. White P. J. Hammond J. P. (red.). Springer Science, Business Media B.V., Dordrecht, 117-142.
  • Vance C. P., 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390-397.
  • Wang L., Li Z., Qian W., Guo W., Gao X., Huang L., Wang H., Zhu H., Wu J. W., Wang D., Liu D., 2011. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiol. 157, 1283-1299.
  • Wang L., Lu S., Zhang Y., Li Z,. Du X., Liu D., 2014. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J. Integr. Plant Biol. 56, 299-314.
  • Waters B. M., Blevins D. G., 2000. Ethylene production, cluster root formation, and localization of iron (III) reducing capacity in Fe deficient squash roots. Plant Soil 225, 21-31.
  • Watt M., Evans J. R., 1999. Proteoid roots. Physiology and development. Plant Physiol. 121, 317-323.
  • Xiao K., Harrison M. J., Wang Z. Y., 2005. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222, 27-36.
  • Xu W., Shi W., Jia L., Liang J., Zhang J., 2012. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress. Plant Cell Environ. 35, 1393-1406.
  • Zhang R., Liu G., Wu N., Gu M., Zeng H., Zhu Y., Xu G., 2011. Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant Soil 349, 3-11.
  • Zhang Z., Liao H., Lucas W. J., 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J. Integr. Plant Biol. 56, 192-220.
  • Żebrowska E., Ciereszko I. 2007. Pobieranie i transport fosforanów w komórkach roślin. Post. Biol. Kom. 34, 283-298.
  • Żebrowska E., Ciereszko I., 2009. Udział kwaśnych fosfataz w gospodarce fosforanowej komórek roślinnych. Post. Biol. Kom. 36, 583-599.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv65p419kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.