PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2016 | 65 | 2 | 227-234
Article title

Nanocząsteczki złota w terapii przeciwnowotworowej

Content
Title variants
EN
Gold nanoparticles in anticancer therapy
Languages of publication
PL EN
Abstracts
PL
Nanotechnologia jest nauką stosunkowo młodą, obejmuje syntezę i badanie obiektów o rozmiarach rzędu 10-9 metra. Jedną z prób zastosowania nanotechnologii jest wykorzystanie nanocząsteczek w terapii przeciwnowotworowej. Prowadzone prace badawcze mają na celu syntezę całkowicie nowych związków terapeutycznych oraz podniesienie wydajności terapii konwencjonalnych m.in. radioterapii. Wykazano, że podanie nanocząsteczek złota podczas naświetlania zwiększa efekty terapeutyczne w postaci obniżenia zdolności komórek do proliferacji. Co ważniejsze, silniejsze efekty uzyskano przy zastosowaniu promieniowania o energii mniejszej (rzędu kiloelektronowoltów zamiast megaelektronowoltów). Opisano również, że w radioterapii łączonej z inkubacją komórek z nanocząsteczkami złota opłaszczonymi glukozą zmniejsza się ich zdolność do proliferacji oraz wzrasta odsetek komórek wchodzących na szlak apoptozy. Dochodzi również do zmian w ekspresji białka p53 i zatrzymywanie się komórek w punkcie kontrolnym G2/M, w którym komórki są najbardziej wrażliwe na promieniowanie. Z tego względu modyfikacje NPs mogą stanowić ogromną szansę na opracowanie innowacyjnych i wysoce skutecznych leków przeciwnowotworowych.
EN
Nanotechnology is a relatively young science focusing on the synthesis and studies of the objects with dimensions of the order of 10-9 meters. One approach to make the nanotechnology useful consists in application of nanoparticles in anticancer therapy. There are conducted studies aimed at the synthesis of totally new therapeutic compounds and increased efficiency of conventional therapies, among others - radiotherapy. It was demonstrated that administration of gold nanoparticles (GNPs) during the exposure of cells to ionizing radiation increases therapeutic effects by reducing their proliferation. Moreover, larger effects of radiation treatment combined with GNPs were obtained by using radiation energies in the range of keV instead of MeV. It was also described that irradiation combined with incubation of cells with gold nanoparticles coated with glucose decreases their ability to proliferate and increases the percentage of the cells entering on the apoptotic pathway. This leads also to changes in p53 protein expression and arrest of cell cycle in the G2/M phase, in which cells are most sensitive to radiation. Therefore, modifications of GNPs may help to develop innovative and highly effective anticancer drugs.
Journal
Year
Volume
65
Issue
2
Pages
227-234
Physical description
Dates
published
2016
Contributors
  • Wydział Biologiczno-Chemiczny Uniwersytetu w Białymstoku, Instytut Biologii, Zakład Biofizyki, Konstantego Ciołkowskiego 1J, 15-950 Białystok, Polska
  • Faculty of Biology and Chemistry, University of Bialystok, Institute of Biology, Department of Biophysics, Konstantego Ciołkowskiego 1J, 15-950 Białystok, Poland
  • Wydział Biologiczno-Chemiczny Uniwersytetu w Białymstoku, Instytut Biologii, Zakład Biofizyki, Konstantego Ciołkowskiego 1J, 15-950 Białystok, Polska
  • Faculty of Biology and Chemistry, University of Bialystok, Institute of Biology, Department of Biophysics, Konstantego Ciołkowskiego 1J, 15-950 Białystok, Poland
References
  • Babaei M., Ganjalikhani M., 2014. The potential effectiveness of nanoparticles as radio sensitizers of radiotherapy. Bioimpacts 4, 15-20.
  • Baronzio G. F., Hager E. D., 2006. Hyperthermia In Cancer Treatment: A Primer. Springer
  • Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A. P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016.
  • De la Isla A., Brostow W., Bujard B., Esteves M., Rodriguez J. R., Vargas S., Castano V. M., 2003. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifestes in tribology. Mat. Res. Innovat. 7, 110-114.
  • Gamucci O., Bertero A., Gagliardi M., Giuseppe B., 2014. Biomedical nanoparticles: overwiew of their surface immune-compatibility. Coatings 4, 139-159.
  • Geng F., Kun S., Xing J. Z., Yuan C., Yan S., Yang Q., Chen J., Kong B., 2011. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 22, 285101.
  • Ghosh P., Han G., De M., Kim C. K., Rotello V. M., 2008. Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev. 60, 1307-1315.
  • Han M., Gao X., Su J. Z., Nie S., 2001. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631-635.
  • Handy E. S., Ivkov R., Ellis-Busby D., Foreman A., Braunhut S. J., Gwost D. U., Ardman B., Jahngen E. G. E., 2003 Thermotherapy via targeted delivery of nanoscale magneticparticles. United States Patent 6997863.
  • James W. D., Berger T., Elston D. M. D., 2011. Andrew's Diseases of the Skin, XI editon. Elsevier Saunders
  • Khoshgard K., Hashemi B., Arbabi A., Rasaee M. J., Soleimani M., 2014. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cells under orthovoltage superficial radiotherapy techniques. Phys. Med. Biol. 59, 2249-2263.
  • Kobayashi K., Wei J., Iida R., Jiro K., Niikura K., 2014. Surface engineering of nanoparticles for therapeutic applications. Polymer J. 46, 460-468.
  • Koh I., Josephson L., 2009. Magnetic nanoparticle sensors. Sensors 9, 8130-8145.
  • Lansdown A. B. G., 2004. A review of the use of silver in wound care: facts and fallacies. Br J Nurs. Suppl. 6, 6-19.
  • Mah C., Zolotukhin I., Fraites T. J., Dobson J., Batich C., Byrne B. J., 2000. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Therap. 6, 106-112.
  • Mahtab R., Rogers J. P., Murphy C. J., 1995. Protein-sized quantum dot luminescence can distinguish between 'straight', 'bent' and 'kinked' oligonucleotides. J. Am. Chem. Soc. 117, 9099-9100.
  • Mesbahi A., 2010. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother. 15, 176-180.
  • Moghimi S. M., Hunter A. C., Morray J. C., 2001. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283-318.
  • Panatarotto D., Prtidos C. D., Hoebeke J., Brown F., Kramer E., Briand J. P., Muller S., Prato M., Bianco A., 2003. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961-966
  • Peralta D. V., Heidari Z., Dash S., Tarr M. A., 2015. Hybrid Paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. ACS Appl. Mater. Interfa. 7, 7101-7111.
  • Rahman W. N., Bishara N., Ackerly T., Cheng H., Jackson P., Wong C., Davidson R., Geso M., 2009. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed. Nanotechnol. Biol. Med. 5, 136-142.
  • Reich D. H., Tanase M., Hultgren A., Bauer L. A., Chen C. S., Meyer G. J., 2003. Biological applications of multifunctional magnetic nanowires. J. Appl. Phys. 92, 7275-7280.
  • Roa W., Zhang X., Guo L., Shaw A., Hu X., Xiong Y., Gulavita S., Patel S., Sun X., Chen J., Moore R., Xing J. Z., 2009. Gold nanoparticles sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology 20, 375101.
  • Setua S., Ouberai M., Piccirillo S. G., Wattts C., Welland M., 2014. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale 6, 10865-10873.
  • Shinkai M., Yanase M., Suzuki M., Honda H., Wakabayashi T., Yoshida J., Kobayashi T., 1999. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Mater. 194, 176-184.
  • Wang S., Mamedova N., Kotov N. A., Chen W., Studer J., 2002. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2, 817-822.
  • You J. O., Guo P., Auguste D. T., 2013. A drug-delivery vehicle combining the targeting and thermal ablation of HER+ breast-cancer cells with triggered drug release. Angew. Chem. Int. Ed. 52, 4141-4146.
  • Zhang X., Xing J. Z., Chen J., Ko L., Amanie J., Gulavita S., Pervez N., Yee D., Moore R., Roa W., 2008. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin. Invest. Med. 31, 160-167.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv65p227kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.