Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 65 | 2 | 187-195

Article title

Fotosynteza u eukariontów, czyli krótka historia endosymbiozy

Content

Title variants

EN
Eukaryotic photosynthesis - a brief history of endosymbiosis

Languages of publication

PL EN

Abstracts

PL
Fotosyntetyczne organizmy eukariotyczne odgrywają kluczową rolę w biosferze Ziemi. Na lądzie dominują rośliny wyższe, z tego względu przez stulecia to one właśnie były przedmiotem najintensywniejszych badań. Tymczasem rośliny są zaledwie jedną z wielu grup fotosyntetycznych eukariontów. Nabycie zdolności do przeprowadzania fotosyntezy zaszło niezależnie u przodków kilkunastu innych grup systematycznych. Przedstawiciele części z nich są głównymi producentami biomasy w morzach i oceanach, gdzie wchodzą w skład fitoplanktonu. W niniejszym artykule omówiono rozpowszechnienie fotosyntezy u eukariontów oraz procesy, które doprowadziły do nabycia przez nie zdolności do jej przeprowadzania. Z uwagi na to, iż w literaturze przedmiotu najwięcej uwagi poświęcono roślinom wyższym i zielenicom, w niniejszym artykule skupiono się na przedstawicielach pozostałych grup fotosyntetycznych eukariontów.
EN
Photosynthetic organisms belonging to the kingdom of eukaryota fulfill significant roles in the biosphere. Higher plants dominate on the land, therefore this group has been most intensively studied. However, plants are only one group of the many other groups of photosynthetic eukaryota. The ability to perform photosynthesis was acquired independently by ancestors of several eukaryotic lineages. Some of these lineages are major primary producers in the oceans. In this article, occurrence of photosynthesis in eukaryota, as well as processes responsible for acquirement of plastids are described. The authors decided to concentrate on systematic groups other than higher plants and green algae, because photosynthesis of last two has been widely described in the literature.

Journal

Year

Volume

65

Issue

2

Pages

187-195

Physical description

Dates

published
2016

Contributors

  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
author
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland

References

  • Adl S. M., Simpson A. G., Lane C. E., Lukeš, J., Bass D., Bowser S. S., Spiegel F. W., 2012. The revised classification of eukaryotes. J. Euk. Microbiol. 59, 429-51.
  • Andersen R.A., 2004. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508-1522.
  • Bhattacharya D., Schmidt H. A., 1997.Division glaucocystophyta. [W:] Origin of algae and their plastids. Bhattacharya D. (red.). Springer, Vienna, 139-148.
  • Buitenhuis E., van Bleijswijk J., Bakker D., Veldhuis M., 1996. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Mar. Ecol. Prog. 143, 271-282.
  • Delwiche C. F., 2007. The origin and evolution of dinoflagellates. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 191-205.
  • de Vargas C., Aubry M. P., Probert I., Young J., 2007. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 251-285.
  • Douglas S. E., 1998. Plastid evolution: origins, diversity, trends. Curr. Op. Gen. Dev. 8, 655-661.
  • Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O., Taylor F. J. R., 2004. The evolution of modern eukaryotic phytoplankton. Science 305, 354-360.
  • Fehling J., Stoecker D., Baldauf S. L., 2007. Photosynthesis and the eukaryote tree of life. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 75-107.
  • Fenchel T., Bernard C., 1993. Endosymbiotic purple non-sulphur bacteria in an anaerobic ciliated protozoon. FEMS Microb. Lett. 110(1), 21-25.
  • Fraunholz M. J., Wastl J., Zauner S., Rensing S. A., Scherzinger M. M., Maier U. G., 1997. The evolution of cryptophytes. [W:] Origin of algae and their plastids. Bhattacharya D. (red.). Springer, Vienna, 163-174.
  • Gechev T. S., van Breusegem F., Stone J. M., Denev I., Laloi C., 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 1091-1101.
  • Hackett J. D., Yoon H. S., Butterfield N. J., Sanderson M. J., Bhattacharya D., 2007. Plastid endosymbiosis: sources and timing of the major events. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 109-132.
  • Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E., 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucl. Ac. Res. 21, 3537-3544.
  • Hoffmeister M., van der Klei A., Rotte C., van Grinsven K. W., van Hellemond J. J., Henze K., Tielens A. G. M., Martin W., 2004. Euglena gracilis rhodoquinone: ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J. Biol. Chem. 279, 22422-22429.
  • Hohmann-Marriott M. F., Blankenship R. E., 2011. Evolution of photosynthesis. Ann. Rev. Plant Biol. 62, 515-548.
  • Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P. J., 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl Acad. Sci. USA 107, 10949-10954.
  • Keeling P. J., 2004. Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91, 1481-1493.
  • Kooistra W., Gersonde R., Medlin L. K., Mann D. G., 2007. The origin and evolution of the diatoms: their adaptation to a planktonic existence. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 207-249.
  • Leedale G. F., Vickerman K., 2000. Phylum Euglenozoa. [W:] An illustrated guide to the protozoa. Lee J. J., Leedale G. F., Bradbury P. (red.). Soc. Protozool., Lawrence, USA, 1135-1185.
  • Lewis L. A., McCourt R. M., 2004. Green algae and the origin of land plants. Am. J. Bot. 91, 1535-1556.
  • Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Lesister D., Stoebe B., Hasegawa M., Penny D., 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246-12251.
  • McFadden G. I., Gilson P. R., Hofmann C. J., 1997. Division Chlorarachniophyta. [W:] Origin of algae and their plastids. Bhattacharya D. (red.). Springer, Vienna, 175-185.
  • McFadden G. I., van Dooren G. G., 2004. Evolution: red algal genome affirms a common origin of all plastids. Curr. Biol. 14, R514-R516.
  • Nowicka B., Kruk J., 2013. Reaktywne formy tlenu w roślinach - więcej niż trucizna. Kosmos 62, 583-596.
  • O'Kelly C. J., 2007. The origin and early evolution of green plants. [W:] Evolution of Primary Producers in the Sea. Falkowski P. G., Knoll A. H. (red.). Elsevier Academic Press, 287-309.
  • Pfannschmidt T., Nilsson A., Allen J. F., 1999. Photosynthetic control of chloroplast gene expression. Nature 397, 625-628.
  • Rodríguez-Ezpeleta N., Brinkmann H., Burey S. C., Roure B., Burger G., Löffelhardt W., Bohnert H. J., Lang B. F., Philippe H., 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15, 1325-1330.
  • Rumpho M. E., Summer E. J., Manhart J. R., 2000. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 123, 29-38.
  • Samsonoff W. A., MacColl R., 2001. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch. Microb. 176, 400-405.
  • Saunders G. W., Hommersand M. H., 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J Bot. 91, 1494-1507.
  • Stiller J. W., 2007. Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 12, 391-396.
  • Yoon H. S., Hackett J. D., Ciniglia C., Pinto G., Bhattacharya D., 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809-818.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv65p187kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.