PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2016 | 65 | 2 | 163-175
Article title

Terapie komórkowe a prekursory neuralne w mózgu dorosłych ssaków*

Authors
Content
Title variants
EN
Cellular therapies and neural precursors in the adult brain
Languages of publication
PL EN
Abstracts
PL
Współczesna medycyna w miarę dobrze radzi sobie z leczeniem wielu chorób nabytych i wrodzonych, jednak skuteczna i trwała naprawa większości zaburzeń ośrodkowego układu nerwowego wciąż pozostaje poza naszymi możliwościami. Dlatego prowadzi się intensywne badania podstawowe i przedkliniczne, które umożliwiłyby lepsze poznanie przyczyn takich ograniczeń oraz dawały możliwość opracowania nowych terapii zaburzeń neurodegeneracyjnych, udarów, urazowego uszkodzenia mózgu i rdzenia kręgowego oraz innych chorób.
Jednym z bardziej obiecujących kierunków są terapie komórkowe z wykorzystaniem własnych, endogennych mechanizmów naprawczych, innym kierunkiem jest zastosowanie nowych, egzogennych komórek.
W pracy przedstawiono ogólne przyczyny trudności naprawy uszkodzeń mózgu, a następnie zjawiska powstawania nowych neuronów w mózgu dorosłych zwierząt i ludzi w sytuacji fizjologicznej oraz w sytuacji uszkodzenia mózgu. Omówiono niektóre przykłady wykorzystania prekursorów w strategiach naprawczych. W ostatniej części pracy przedstawiono wybrane terapie z zastosowaniem przeszczepów innych, mniej typowych prekursorów neuronów i gleju obecnych w mózgu w naprawie uszkodzeń ośrodkowego układu nerwowego.
EN
Modern medicine can treat relatively well many acquired and congenital diseases but still an effective and durable repair of the most of central nervous system disorders is beyond our capabilities. Therefore, comprehensive basic and preclinical studies are being carried out which would allow a better understanding of the reasons of these limits. They can potentially provide new strategies for neurodegenerative disorders, stroke, traumatic brain and spinal cord injury, and other diseases.
Some of the most promising approaches are cell therapies with the use of endogenous repair mechanisms, but also another direction might be provided with new exogenous cell therapies.
The article outlines the general reasons for the difficulties in the brain repair and discusses the phenomenon of new neurons in the brain of adult animals and humans, in the context of physiology and the brain injury. Promising strategies with neural precursors in the Central Nervous System repair are presented. Finally, promising state-of-the-art approaches with not typical cell subtypes of neuronal and glial precursors from the brain transplantation therapies are presented.
Journal
Year
Volume
65
Issue
2
Pages
163-175
Physical description
Dates
published
2016
References
  • Alvarez-Buylla A., Garcia-Verdugo J. M., 2002. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629-634.
  • Altman J., 1962. Are new neurons formed in the brains of adult mammals? Science 135, 1127-1128.
  • Altman J., 1963. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573-591.
  • Altman J., Das G. D., 1965. Post-natal origin of microneurones in the rat brain. Nature 207, 953-956.
  • Arlotta P., Magavi S. S., Macklis J. D., 2003. Induction of adult neurogenesis: molecular manipulation of neural precursors in situ. Ann. NY Acad. Sci. 991, 229-236.
  • Arruda-Carvalho M., Sakaguchi M., Akers K. G., Josselyn S. A., Frankland P. W., 2011. Posttraining ablation of adult-generated neurons degrades previously acquired memories. J. Neurosci. 31, 15113-15127.
  • Arvidsson A., Collin T., Kirik D., Kokaia Z., Lindvall O., 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963-970.
  • Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., Lent R., Herculano-Houzel S., 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532-541.
  • Bailey C. H., Kandel E. R., Harris K. M., 2015. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7, doi: 10.1101/cshperspect.a021758.
  • Braun S. M. G., Pilz G. A., Machado R. A. C., Moss J., Becher B., Toni N., Jessberger S., 2015. Programming hippocampal neural stem/progenitor cells into oligodendrocytes enhances remyelination in the adult brain after injury. Cell Rep. 11, 1679-1685.
  • Bunge M. B., 2008. Novel combination strategies to repair the injured mammalian spinal cord. J. Spinal Cord Med. 31, 262-269.
  • Chen G., Wernig M., Berninger B., Nakafuku M., Parmar M., Zhang C. L., 2015. In vivo reprogramming for brain and spinal cord repair. eNeuro 2, doi: ENEURO.0106-15.2015.
  • Cho K. O., Lybrand Z. R., Ito N., Brulet R., Tafacory F., Zhang L., Good L., Ure K., Kernie S. G., Birnbaum S. G., Scharfman H. E., Eisch A. J., Hsieh J., 2015. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6, 6606.
  • Clowry G., Molnár Z., Rakic P., 2010. Renewed focus on the developing human neocortex. J. Anat. 217, 276-288.
  • Czupryn A., Zhou Y. D., Chen X., McNay D., Anderson M. P., Flier J. S., Macklis J. D., 2011. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334, 1133-1137.
  • De Filippis L., Binda E., 2012. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl. Med. 1, 298-308.
  • Doetsch F., Caillé I., Lim D. A., García-Verdugo J. M., Alvarez-Buylla A., 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716.
  • Gage F. H., 2000. Mammalian neural stem cells. Science 287, 1433-1438.
  • Gladwin K., Choi D., 2015. Olfactory ensheathing cells: part I - current concepts and experimental laboratory models. World Neurosurg. 83, 114-119.
  • Gorrie C. A., Hayward I., Cameron N., Kailainathan G., Nandapalan N., Sutharsan R., Wang J., Mackay-Sim A., Waite P. M., 2010. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res. 1337, 8-20.
  • Gould E., 2007. How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci. 8, 481-488.
  • Herculano-Houzel S., Manger P. R., Kaas J. H., 2015. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, doi: 10.3389/fnana.2014.00077. Erratum in: Front Neuroanat. 2015, 9, 38.
  • Huang Y., Tan S., 2015. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci. Bull. 3, 1357-1367.
  • Jablonska B., Aguirre A., Raymond M., Szabo G., Kitabatake Y., Sailor K. A., Ming G. L., Song H., Gallo V., 2010. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat. Neurosci. 13, 541-550.
  • Jaholkowski P., Kiryk A., Jedynak P., Ben Abdallah N. M., Knapska E., Kowalczyk A., Piechal A., Blecharz-Klin K., Figiel I., Lioudyno V., Widy-Tyszkiewicz E., Wilczynski G. M., Lipp H. P., Kaczmarek L., Filipkowski R. K., 2009. New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn. Mem. 16, 439-451.
  • Kempermann G., Jessberger S., Steiner B., Kronenberg G., 2004. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447-452.
  • Kokoeva M. V., Yin H., Flier J. S., 2005. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679-683.
  • Kriegstein A., Alvarez-Buylla A., 2009. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149-184.
  • Kulcenty K., Wróblewska J., Mazurek S., Liszewska E., Jaworski J., 2015. Molecular mechanisms of induced pluripotency. Współczesna Onkologia (Pozn.) 19, A22-A29.
  • Lim D. A., Alvarez-Buylla A., 2014. Adult neural stem cells stake their ground. Trends Neurosci. 37, 563-571.
  • Liszewska E., Jaworski J., 2013. Po co neurobiologom indukowane pluripotencjalne komórki macierzyste? Post. Biochem. 59, 164-174.
  • Lledo P. M., Merkle F. T., Alvarez-Buylla A., 2008. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31 392-400.
  • Madhavan L., Collier T. J., 2010. A synergistic approach for neural repair: cell transplantation and induction of endogenous precursor cell activity. Neuropharmacology 58, 835-844.
  • Magavi S. S., Lois C., 2008. Transplanted neurons form both normal and ectopic projections in the adult brain. Develop. Neurobiol. 68, 1527-1537.
  • Magavi S. S., Leavitt B. R., Macklis J. D., 2000. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951-955.
  • Ming G. L., Song H., 2011. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687-702.
  • Mo Z., Zecevic N., 2009. Human fetal radial glia cells generate oligodendrocytes in vitro. Glia 57, 490-498.
  • Okano H., Yamanaka S., 2014. iPS cell technologies: significance and applications to CNS regeneration and disease. Mol. Brain 7, 22.
  • Pedersen P. M., Jørgensen H. S., Nakayama H., Raaschou H. O., Olsen T. S., 1995. Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol. 38, 659-666.
  • Pinto L., Götz M., 2007. Radial glial cell heterogeneity - The source of diverse progeny in the CNS. Prog. Neurobiol. 83, 2-23.
  • Qin Y., Zhang W., Yang P., 2015. Current states of endogenous stem cells in adult spinal cord. J. Neurosci. Res. 93, 391-398.
  • Ramón-Cueto A., Plant G. W., Avila J., Bunge M. B., 1998. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18, 3803-3815.
  • Ramón y Cajal S., 1913. Degeneration and regeneration of the nervous system. Hafner, New York.
  • Rotheneichner P., Marschallinger J., Couillard-Despres S., Aigner L., 2013. Neurogenesis and neuronal regeneration in status epilepticus. Epilepsia 54, 40-42.
  • Scharfman H. E., Hen R., 2007. Neuroscience. Is more neurogenesis always better? Science 315, 336-338.
  • Seaberg R. M., van der Kooy D., 2003. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 26, 125-131.
  • Seri B., García-Verdugo J. M., McEwen B. S., Alvarez-Buylla A., 2001. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153-7160.
  • Snapyan M., Lemasson M., Brill M. S., Blais M., Massouh M., Ninkovic J., Gravel C., Berthod F., Götz M., Barker P. A., Parent A., Saghatelyan A., 2009. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29, 4172-4188.
  • Spear L. P., 2000. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 24, 417-463.
  • Tabakow P., Raisman G., Fortuna W., Czyz M., Huber J., Li D., Szewczyk P., Okurowski S., Miedzybrodzki R., Czapiga B., Salomon B., Halon A., Li Y., Lipiec J., Kulczyk A., Jarmundowicz W., 2014. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 23, 1631-1655.
  • Thompson L. H., Björklund A., 2015. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol. Dis. 79, 28-40.
  • Yang H., He B. R., Hao D. J., 2015. Biological roles of olfactory ensheathing cells in facilitating neural regeneration: a systematic review. Mol. Neurobiol. 51, 168-179.
  • Yoneyama M., Shiba T., Hasebe S., Ogita K., 2011. Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration. J. Pharmacol. Sci. 115, 425-432.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv65p163kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.