Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 65 | 1 | 103-115

Article title

Fluorescencja chlorofilu a - historia odkrycia i zastosowanie w badaniach roślin

Content

Title variants

EN
Chlorophyll a fluorescence - history of discovery and practical application in environmental plant science

Languages of publication

PL EN

Abstracts

PL
Fluorescencja chlorofilu a jest czułą, nieinwazyjną i szybką metodą pomiaru wydajności fotosystemu II (PSII). Artykuł przedstawia wprowadzenie teoretyczne, historię odkrycia fenomenu, opis najczęściej używanych technik oraz praktyczne zastosowanie pomiarów fluorescencji chlorofilu a w badaniach. Scharakteryzowano trzy główne metody pomiaru fluorescencji chlorofilu a tj. szybką, modulowaną oraz jej obrazowanie. Analiza parametrów fotoluminescencji chlorofilu a dostarcza wielu informacji o funkcjonowaniu PSII roślin rosnących w warunkach stresu abiotycznego i biotycznego, jest powszechnie wykorzystywana przez fizjologów roślin oraz ekofizjologów. Przedstawiono najnowsze wyniki badań wpływu wybranych niekorzystnych warunków środowiska (promieniowanie świetlne, wysoka temperatura, przechłodzenie, susza, zalanie, uszkodzenie mechaniczne) na zmiany parametrów fluorescencji chlorofilu a. Artykuł jest wprowadzeniem do tematyki pomiarów fluorescencji chlorofilu a i jest przeznaczony dla osób zainteresowanych wykorzystaniem jej w swoich badaniach.
EN
Chlorophyll a fluorescence is a sensitive, non-invasive fast tool for measuring photosynthetic efficiency mainly of photosystem II (PSII). We present description of basic photoluminescence mechanism, history of chlorophyll fluorescence discovery and review of main chlorophyll fluorescence measurement techniques with practical issue. In this article, we focus on methods of a fast chlorophyll fluorescence, pulse-amplitude modulated chlorophyll fluorescence and chlorophyll fluorescence imaging technique. Described techniques are powerful and widely use tools, available for plant physiologists and ecophysiologists. Analysis of the chlorophyll fluorescence parameters, which are good indicators or biomarkers of plant tolerance, provides many information about efficiency of PSII during abiotic and biotic stress. We describe how environmental stress conditions (irradiance, heat, cold, drought, flood and mechanical wounding) influence to most popular chlorophyll a fluorescence parameters and how to interpret them. The aim of this review is to provide a simple, practical guide to chlorophyll fluorescence for beginners.

Journal

Year

Volume

65

Issue

1

Pages

103-115

Physical description

Dates

published
2016

Contributors

  • Uniwersytet w Białymstoku, Wydział Biologiczno-Chemiczny, Instytut Biologii, Ciołkowskiego 1J, 15-245 Białystok, Polska
  • University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Ciołkowskiego 1J, 15-245 Białystok, Poland
  • Uniwersytet w Białymstoku, Wydział Biologiczno-Chemiczny, Instytut Biologii, Ciołkowskiego 1J, 15-245 Białystok, Polska
  • University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Ciołkowskiego 1J, 15-245 Białystok, Poland

References

  • Al-Rawashdeh N. A. F., 2012. Current achievement and future potential of fluorescence spectroscopy. [W:] Macro To Nano Spectrsocopy. Uddin J. (red.). InTech, Croatia, 209-250.
  • Baker N. R., Rosenqvist E., 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607-1621.
  • Barbagallo R. P., Oxborough K., Pallett K. E., Baker N. R., 2003. Rapid, non-invasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol. 132, 485-493.
  • Barron-Gafford G. A., Rascher U., Bronstein J. L., Davidowitz G., Chaszar B., Huxman T. E., 2012. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence. Photosynth. Res. 113, 249-260.
  • Bertolde F. Z., Almeida A. A., Pirovani C. P., Gomes F. P., Ahnert D., Baligar, V. C., Valle, R. R., 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50, 447-457.
  • Bilger W., Björkman O., 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth. Res. 25, 173-185.
  • Bjorkman O., Demmig B., 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta 170, 489-504.
  • Blankenship R. E., 2014. Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford.
  • Buschmann C., Lichtenthaler H. K., 1998. Principles and characteristics of multicolour fluorescence imaging of plants. J. Plant Physiol. 152, 297-314.
  • Buschmann C., Langsdorf G., Lichtenthaler H. K., 2000. Imaging of the blue, green and red fluorescence emission of plants: An overview. Photosynthetica 38, 483-491.
  • Buschmann C., Langsdorf G., Lichtenthaler, H. K., 2009. The blue, green, red and far-red fluorescence signatures of plant tissues, their multicolor fluorescence imaging and application for agrofood assessment. [W:] Optical Methods for Monitoring Fresh and Processed Food-Basics and Applications for a Better Understanding of Non-Destructive Sensing. Zude M. (red.). Taylor&Francis Group, CRCPress, Boca Raton, 272-319.
  • Chaerle L., Van Der Straeten D., 2001. Seeing is believing: imaging techniques to monitor plant health. Biochim. Biophys. Acta 1519, 153-166.
  • Costa A. C., Rezende-Silva S. L., Megguer C. A., Moura L. M. F., Rosa M., Silva A. A., 2015. The effect of irradiance and water restriction on photosynthesis in young jatobá-do-cerrado (Hymenaea stigonocarpa) plants. Photosynthetica 53, 118-127.
  • Dai F., Zhou M., Zhang G., 2007. The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiol. Bioch. 45, 915-921.
  • Drożak A., Romanowska E., 2006. Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth. BBA Bioenerg. 1757, 1539-1546.
  • Duysens L. N. M., Sweers H. E., 1963. Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. [W:] Studies on Microalgae and Photosynthetic Bacteria. Japanese Society of Plant Physiologists (red.). University of Tokyo Press, Tokyo, 353-372.
  • Faraloni C., Cutino I., Petruccelli R., Leva A. R., Lazzeri S., Torzillo G., 2011 Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ. Exp. Bot. 73, 49-56.
  • Fryer M. J., Andrews J. R., Oxborough K., Blowers D. A., Baker N. R., 1998. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 116, 571-580.
  • Genty B., Briantais J. M., Baker N. R., 1989. The relationship mine in situ between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87-92.
  • Gitelson A. A., Buschmann C., Lichtenthaler H. K., 1998. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant. Physiol. 152, 283-296.
  • Gorbe E., Calatayud A., 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic-Amsterdam 138, 24-35.
  • Govindjee, 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant. Physiol. 22,131-160.
  • Govindjee, 2004. Chlorophyll a fluorescence: a bit of basics and history. [W:] Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Papageorgiou G. C., Govindjee (red.). Springer, Dordrecht, 1-42.
  • Haque M. S., Kjaer K. H., Rosenqvist E., Sharma D. K., Ottosen C. O., 2014. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environ. Exp. Bot., 99, 1-8.
  • Holt N. E., Zigmantas D., Valkunas L., Li X. P., Niyogi K. K., Fleming G. R., 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433-436.
  • Jabłoński A., 1933. Efficiency of anti-stokes fluorescence in dyes. Nature 131, 839-840.
  • Joiner J., Yoshida Y., Vasilkov A. P., Middleton E. M., 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637-651.
  • Joliot P., Joliot A., 2003. Excitation transfer between photosynthetic units: the 1964 experiment, Photosynth. Res. 76, 241-245.
  • Kacperska A., 2012. Reakcje roślin na stresowe czynniki środowiska. [W:] Fizjologia roślin. Kopcewicz J., Lewak S. (red.). PWN, Warszawa, 634-708.
  • Kalaji M. H., 2011. Oddziaływanie abiotycznych czynników stresowych na fluorescencję chlorofilu w roślinach wybranych odmian jęczmienia Hordeum vulgare L. Wydawnictwo SGGW, Warszawa.
  • Kautsky H., Hirsch A., 1931. Neue Versuche zur Kohlensaure-assimilation. Naturwissenschaften 19, 964.
  • Keren N., Berg A., VanKan P. J. M., Levanon H., Ohad I., 1997. Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc. Natl. Acad. Sci. USA. 94, 1579-1584
  • Kiss A. Z., Ruban A. V., Horton P. 2008., The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972-3978.
  • Kouril R., Zygadlo A., Arteni A. A., de Wit C. D., Dekker J. P., Jensen P. E., Scheller H. V., Boekema E. J., 2005. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44, 10935-10940.
  • Krasnovsky Jr A. A., 2003. Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth. Res. 76, 389-403.
  • Larré C. F., Fernando J. A., Marini P., Bacarin M. A., Peters, J. A., 2013. Growth and chlorophyll a fluorescence in Erythrina crista-galli L. plants under flooding conditions. Acta Physiol. Plant. 35, 1463-1471.
  • Li W. D., Hu X., Liu J. K., Jiang G. M., Li O., Xing D., 2011. Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. Biol. Plantarum, 55, 279-284.
  • Li X., Cai J., Liu F., Zhou Q., Dai T., Cao W., Jiang D., 2015. Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant. Growth. Regul, 1-9. DOI 10.1007/s10725-015-0029-y
  • Maxwell K., Johnson G. N., 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659-668.
  • Mishra K. B., Iannacone R., Petrozza A., Mishra A., Armentano N., La Vecchia G, Trtílek M., Cellini F., Nedbal L., 2012. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 182, 79-86.
  • Nishiyama Y., Allakhverdiev S. I., Murata N., 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757, 742-749.
  • Nishiyama Y., Murata N., 2014. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biot. 98, 8777-8796.
  • Paillotin G., 1976. Movement of excitations in the photosynthetic domains of photosystem II, J. Theor. Biol. 58, 237-252.
  • Papageorgiou G., 1975. Chlorophyll fluorescence an intrinsic probe at photosynthesis. [W:] Bioenergetics of photosynthesis. Govindjee (red.). Academic Press, NewYork, 319-371.
  • Papageorgiou G. C., Govindjee, 2011. Photosystem II fluorescence: slow changes - scaling from the past. J. Photochem. Photobiol. B. 104, 258-270.
  • Pfündel E. E., Klughammer C., Meister A., Cerovic Z. G., 2013. Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F0 fluorescence in leaves of Arabidopsis thaliana and Zea mays. Photosynth. Res. 114, 189-206.
  • Quilliam R. S., Swarbrick P. J., Scholes J. D., Rolfe S. A., 2006. Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. J. Exp. Bot. 57, 55-69.
  • Rapacz M., 2007. Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica 45, 409-418.
  • Rosenqvist E., van Kooten O., 2003. Chlorophyll fluorescence: a general description and nomenclature. [W:] Practical Applications of Chlorophyll Fluorescence in Plant Biology DeEll J. R., Tiovonen P. M. A. (red.). Kluwer Academic Publishers, Boston, 31-77.
  • Röttgers R., 2007. Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton. Deep-Sea Res. Pt. I 54, 437-451.
  • Schansker G., Yuan Y., Strasser R. J., 2008. Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison. [W:] Energy from the Sun. Allen J. F., Osmond B., Golbeck J. H., Gantt E. (red.). Springer, Dordrecht, 945-949.
  • Schreiber U., 2004. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. [W:] Chlorophyll fluorescence: a signature of photosynthesis Papageorgiou G. C., Govindjee (red.). Kluwer, Dordrecht, 279-319.
  • Schreiber U., Schliwa W., Bilger U., 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosynth. Res. 10, 51-62.
  • Srivastava A., Strasser R. J., 1997. Constructive and destructive actions of light on the photosynthetic apparatus. J. Sci. Ind. Res. 56, 133-148.
  • Starck Z., 2014. Fizjologia roślin: jak było wczoraj, jak jest dziś, a co przyniesie jutro? Kosmos 63, 569-589.
  • Stirbet A., Govindjee, 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 104, 236-257.
  • Stirbet A., Srivastava A., Strasser R. J., 1998. The energetic connectivity of PSII centres in higher plants probed in vivo by the fast fluorescence rise O-J-I-P and numerical simulations. [W:] Photosynthesis: Mechanisms and Effects, Proceedings of the Xlth International Congress on Photosynthesis. Budapest, Hungary. Garab G. (red.)., Kluwer Academic Publishers, The Netherlands, 4317-4320.
  • Stokes G. G., 1852. On the change of refrangibility of light. Phil. Trans. R. Soc. Lond. 142, 463-562.
  • Strasser R. J., 1978 The grouping model of plant photosynthesis. [W:] Chloroplast Development. Akoyunoglou G., Argyroudi-Akoyunoglou J. H. (red.) Elsevier Biomedical, 513-538.
  • Strasser R. J., Govindjee, 1991. The Fo and the OJIP fluorescence rise in higher plants and algae. [W:] Regulation of Chloroplast Biogenesis, Argyroudi-Akoyunoglou J. H. (red.). Plenum Press, New York, 423-426.
  • Strasser B. J., Strasser R. J., 1995. Measuring fast fluorescence transients to address environmental questions: the JIP test. [W:] Photosynthesis: From Light to Biosphere. Mathis P. (red.). Kluwer Academic, The Netherlands, 977-980.
  • Strasser R. J., Srivastava A., Tsimilli-Michael M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. [W:] Probing Photosynthesis: Mechanism, Regulation and Adaptation. Yunus M., Pathre U., Mohanty P. (red.). Taylor and Francis, London, 443-480.
  • Strasser R. J., Tsimilli-Michael M., Srivastava A., 2004. Analysis of the chlorophyll fluorescence transient. [W:] Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Papageorgiou G. C., Govindjee (red.)., Springer, Dordrecht, Holland, 321-362.
  • Strasser R. J., Tsimilli-Michael M., Qiang S., Goltsev V., 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta 1797, 1313-1326.
  • Strzałka K., 2012. Fotosynteza i chemosynteza. [W:] Fizjologia roślin. Kopcewicz J., Lewak S. (red.). PWN, Warszawa, 274-444.
  • Sulkiewicz M., Ciereszko I., 2014. Odpowiedź Triticum aestivum L. na zranienie mechaniczne. [W:] Różnorodność biologiczna - od komórki do ekosystemu. Zagrożenia środowiska a ochrona gatunkowa roślin i grzybów. Łaska G. (red.). Polskie Towarzystwo Botaniczne, Białystok, 263-273.
  • Tóth S. Z., Schansker G., Strasser R. J., 2007. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 93, 193-203.
  • Tsimilli-Michael M., Pecheux M., Strasser R. J., 1998. Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJIP. Archs. Sci. Geneve 51, 205-240.
  • Wang X., Dinler B. S., Vignjevic M., Jacobsen S., Wollenweber B., 2015. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci. 230, 33-50.
  • Yu B., Zhao C. Y., Li J., Li J. Y., Peng G., 2015. Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53, 110-117.
  • Zhao M., Yu K., 2014. Application of chlorophyll fluorescence technique in the study of coral symbiotic zooxanthellae micro-ecology. Acta Ecol. Sin. 34, 165-169.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv65p103kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.