Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 3 | 457-469

Article title

Transport dalekodystansowy u roślin: szlaki, mechanizmy, ewolucja

Content

Title variants

EN
Long-distance transport in plants: paths, mechanisms, and evolution

Languages of publication

PL EN

Abstracts

PL
W artykule omówiono, w jaki sposób odbywa się wymiana różnego rodzaju związków między organami w roślinach. Na tle opisu szlaków transportowych przedstawiono mechanizmy odpowiedzialne za transport zwracając uwagę na wyjaśnienie przyczyn odmienności systemu transportu wody i jonów z korzeni do części nadziemnej oraz transportu produktów fotosyntezy z liści do innych organów. Przedyskutowano też rolę systemu przewodzącego w przesyłaniu sygnałów biochemicznych i biofizycznych w roślinie uwzględniając najnowsze informacje literaturowe o transporcie i roli sygnałowej związków wielkocząsteczkowych takich jak białka i kwasy nukleinowe (mRNA, siRNA i miRNA). Znaczną część artykułu poświęcono omówieniu ewolucji systemu przewodzącego i jego szczególnej roli podczas ekspansji roślin w środowisku lądowym.
EN
The paper presents how solutes are transported along a plant, with the special attention paid to the structure of conducting system and mechanisms of solute transport from a root system to a shoot versus photosynthate transport from leaves to other plant organs. The role of conducting system in transduction of biochemical and biophysical signals was underlined including the novel data of high molecular weight molecules, as proteins and nucleic acids (mRNAs, siRNAs, and miRNAs). Significant part of the paper is related to the evolution of phloem and xylem, in particular during the plant expansion into land environment.

Journal

Year

Volume

64

Issue

3

Pages

457-469

Physical description

Dates

published
2015

Contributors

  • Zakład Ekofizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej i Biotechnologii Roślin, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Zakład Ekofizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej i Biotechnologii Roślin, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska

References

  • Baas P., Wheeler E. A., 1996. Parallelism and reversibility in xylem evolution: a review. Int. Assoc. Wood. Anat. J. 17, 351-364.
  • Beerling D. J., Osborne C. P., Chaloner W. G., 2001. Evolution of leaf form in land plants linked to atmospheric CO2 decline in the late Paleozoic era. Nature 410, 352-354.
  • Benhke H.-D., Sjölund R. D., 1990. Sieve elements: Comparative structure, induction and development. Springer-Verlag, Berlin.
  • Botha C. E. J., 2013. A tale of two neglected systems-structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves. Front. Plant Biol. 4, a297.
  • Choat B., Ball M., Luly J., Holtum J., 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol. 131, 41-48.
  • Crisp M. D., Cook L. G., 2012. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681-694.
  • Davidson A., Keller F., Turgeon R., 2011. Phloem loading, plant growth form, and climate. Protoplasma 248, 153-163.
  • Davies W. J., Zhang J., 1991. Root signals and the development of plants growing in drying soil. Ann. Rev. Plant Physiol. Molec. Biol. 42, 55-76.
  • Edwards D., Kerp H., Haas H., 1998. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49, 255-278.
  • Ellerby D. J., Ennos A. R., 1998. Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates. J. Exp. Bot. 49, 979-985.
  • Esau K., 1965. Plant Anatomy. 2nd Edition. McGraw-Hill, New York.
  • Franks P. J., Adams M., A., Amthor J. S., Barbour M. M., Berry J. A., Ellsworth D. S., Farquhar G. D., Ghannoum O., Lloyd J., Mcdowell N., Norby R. J., Tissue D. T., Von Caemmerer S., 2013. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077-1094.
  • Fromm J., 1991. Control of phloem unloading by action potentials in Mimosa. Physiol. Plant. 83, 529-533.
  • Gamalei Y. V., Pokhamkova M. V., Sheremet'ev S. N., 2007. Ecological evolution of the phloem in dicotyledonous plants. Doklady Biol. Sci. 416, 364-367.
  • Hacke U. G., Sperry J. S., Feild T. S., Sano Y., Sikkema E. H., Pittermann J., 2007. Water transport in vesselless Angiosperms: conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113-1126.
  • Knott J. E., 1934. Effect of a localized photoperiod on spinach. Proc. Soc. Horticult. Sci. 31, 152-154.
  • Kumar D., Kumar R., Hyun T. K., Kim J.-Y., 2013. Plasmodesmata and phloem-based trafficking of macromolecules. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 183-216.
  • Liesche J., Schulz A., 2013. Symplasmic transport in phloem loading and unloading. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 133-164.
  • Lingrone R., Duckett J. G., 1994. Cytoplasmic polarity and endoplasmic microtubules associated with the nucleusand organelles are ubiquitous features of food-conducting cells in bryoid mosses (Bryophyta). New Phytol. 127, 601-614.
  • Lingrone R., Duckett J. G., Renzaglia K. S., 2000. Conducting tissues and phyletic relationships of bryophytes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 795-813.
  • Lingrone R., Ducket J.G., Renzaglia K.S., 2012. Major transitions in the evolution of early land plants: a bryological perspective. Ann. Bot. 109, 851: 871.
  • Morelli G., Ruberti I., 2002. Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci. 7, 399-404.
  • Müller W. H., Humbel B. M., van Aelst A. C., van der Krift T. P., Boekhout T., 1999. The perforate septal pore cap of Basidiomycetes. [W:] Plasmodesmata. Structure, function, role in cell communication. van Bel A. J. E., van Kesteren W. J. P. (red.). Berlin: Springer-Verlag; 1999. 120-129.
  • Niklas K. J., 1994. The allometry of safety factors for plant height. Am. J. Bot. 81, 345-351.
  • Oliver M. J., 1996. Desiccation tolerance in vegetative plant cells. Physiol. Plant. 97, 779-787.
  • Pittermann J., Choat B., Jansen S., Stuart S. A., Lynn L., Dawson T. E., 2010. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membrane form and function. Plant Physiol. 153, 1919-1931.
  • Pittermann J., Sperry J.S., Hacke U. G., Wheeler J. K., Sikkema E. H., 2005. Torus-margo pits help conifers compete with angiosperms. Science 310, 1924.
  • Sharkey T. D., Yeh S., 2001. Isoprene emission from plants. Annu .Rev. Plant Physiol. Plant Mol. Biol. 52, 407-436.
  • Schulte P., Hacke U. G., Schoonmaker A. L., 2015. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species. New Phytot. DOI: 10.1111/nph.13437 (w druku)
  • Smith J. A. C., MilburN J. A., 1980. Water stress and phloem loading. Ber. Deutsch. Bot. Ges. 93, 269-280.
  • Sowiński P., 2002. Plazmodesmy, jako element systemu komunikacji w roślinach. Post. Biol. Kom. 29, 627-635.
  • Sowiński P., 2003. Ultrastruktura wiązek przewodzących w liściu oraz załadowanie floemu a ewolucja roślin okrytonasiennych. Wiad. Bot. 47, 19-27.
  • Sowiński P., 2013. Characteristics of symplasmic transport. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 1-40.
  • Sperry J. S., 2003. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164 (Suppl. 3), S115-S127.
  • Sperry J. S., Hacke U. G., 2004. Analysis of circular bordered pit function: I. Angiosperm vessels with homogenous pit membranes. Am. J. Bot. 91, 369-385.
  • Stratmann J., 2003. Long distance run in the wound response jasmonic acid is pulling ahead. Trends Plant Sci. 8, 247-250.
  • Thompson M. V., Holbrook N. M., 2003. Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 26, 1561-77.
  • Ueki C., Nagasato C., Motomura T., Saga N., 2008. Reexamination of the pit plugs and the characteristic membranous structures in Porphyra yezoensis (Bangiales, Rhodophyta). Phycologia 47, 5-11.
  • Van Bel A. J. E., 1999. Evolution, polymorphology and multifunctionality of the phloem system. Perspect. Plant Ecol. Evol. Systemat. 2, 163-184.
  • Xoconostle-Cazares B., Xiang Y., Ruiz-Medrano R., Wang H. L., Monzer J., Yoo B. C., et al. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94-98.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p457kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.