Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 3 | 445-456

Article title

Komunikacja symplastowa w drewnie

Content

Title variants

EN
Symplasmic communication in wood

Languages of publication

PL EN

Abstracts

PL
Rejon drewna wtórnego, oprócz martwych elementów przewodzących i wzmacniających, zawiera żywe komórki połączone za pośrednictwem plazmodesm, które tworzą trójwymiarowy system, w obrębie którego zachodzi intensywny transport symplastowy. Prezentowany artykuł przybliża znaczenie komunikacji symplastowej w drewnie wtórnym, omawiając istotną rolę żywych komórek drewna m.in. w magazynowaniu substancji odżywczych, w transporcie międzykomórkowym oraz w regulacji procesów rozwojowych wybranych elementów drewna. Charakteryzuje również anatomię miękiszu drzewnego, drewno bezpromieniowe oraz różnice między komórkami izolowanymi i kontaktowymi oraz omawia specyfikę transportu symplastowego przebiegającego w apoplastowej przestrzeni drewna wtórnego.
EN
The secondary xylem region, aside from dead conducting and strengthening elements, contains living xylem cells connected via the plasmodesmata which form a three-dimensional system, among which intensive symplasmic transport is continued. The article describes the significance of symplasmic communication in the secondary xylem and the crucial role of living xylem cells in nutrient storage, intercellular transport and the regulation of developmental processes of particular xylem elements. Also provides characteristic of the anatomy of xylem parenchyma, the peculiarity of rayless wood and the nature of symplasmic transport sustained in the apoplasmic wood areas.

Journal

Year

Volume

64

Issue

3

Pages

445-456

Physical description

Dates

published
2015

Contributors

  • Zakład Biologii Rozwoju Roślin, Instytut Biologii Eksperymentalnej, Wydział Nauk Biologicznych, Uniwersytet Wrocławski, Kanonia 6/8, 50-328 Wrocław, Polska

References

  • Alves G., Sauter J. J., Julien J.-L., Fleurat-Lessard P., Ameglio T., Guillot A., Pétel G., Lacointe A., 2001. Plasma membrane H +-ATPase, succinate and isocitrate dehydrogenases activities of vessel-associated cells in walnut trees. J. Plant Physiol. 158, 1263-1271.
  • Améglio T., Ewers F. W., Cochard H., Martignac M., Vandame M., Bodet C., Cruiziat P., 2001. Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol. 21, 387-394.
  • Barnett J. R., 2006. Cell-cell communication in wood. [W:] Cell-cell channels. Baluška F., Volkmann D., Barlow P. W. (red.). Landes Biosci. Springer Sci. Business Media, New York, 135-147.
  • Barnett J. R., Cooper P., Bonner L. J., 1993. The protective layer as an extension of the apoplast. IAWA J. 14, 163-171.
  • Bonhomme M., Peuch M., Ameglio T., Rageau R., Guilliot A., Decourteix M., Alves G., Sakr S., Lacointe A., 2009. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol. 30, 89-102.
  • Braun H. J., 1984. The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. IAWA Bull. 5, 275-294.
  • Brown H. P., Panshin A. J., Forsaith C. C., 1949. Textbook of wood technology. Vol. 1. Structure, identification, defects, and uses of the commercial woods of the United States. McGraw-Hill Book Companym, Inc. New York.
  • Carlquist S., 1970. Wood anatomy of insular species of Plantago and the problem of raylessness. Bull. Torrey Bot. Club 97, 353-361.
  • Carlquist S., 2001. Comparative wood anatomy. Systematic, ecological and evolutionary aspects of dicotyledon wood. Drugie wydanie. Springer-Verlag, Berlin.
  • Carlquist S., 2007a. Bordered pits in ray cells and axial parenchyma: the histology of conduction, storage and strength in living wood cells. Bot. J. Linn. Soc. 153, 157-168.
  • Carlquist S., 2007b. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J. Torrey Bot. Soc. 134, 301-332.
  • Chaffey N., Barlow P., 2001. The cytoskeleton facilitates a three-dimensional symplasmic continuum in the long-lived ray and axial parenchyma cells of angiosperms trees. Planta 213, 811-823.
  • Chowdhury K. A., 1953. The role of initial parenchyma in the transformation of the structure diffuse-porous to ring-porous in the secondary xylem of the genus Gmelina Linn. Proc. Natl. Inst. Sci. India 19, 361-369.
  • Czaninski Y., 1977. Vessel-associated cells. IAWA Bull. 3, 51-55.
  • Decourteix M., Alves G., Bonhomme M., Peuch M., Baaziz K. B., Brunel N., Guilliot A., Rageau R., Améglio T., Pétel G., Sakr S., 2008. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol. 28, 215-224.
  • Ehlers K., Van Bel A. J. E., 2010. Dynamics of plasmodesmal connectivity in successive interfaces of cambial zone. Planta 231, 371-385.
  • Ehlers K., Groβe Westerloh M., 2013. Developmental control of plasmodesmata frequency, structure and function. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 41-82.
  • Ehlers K., Binding H., Kollmann R., 1999. The formation of symplasmic domains by plugging of plasmodesmata: a general event in plant morphogenesis. Protoplasma 209, 181-192.
  • Evert R. F., 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3 ed. New Jersey: John Wiley and Sons, Inc.
  • Fromard L., Babin V., Fleurat-Lessard P., Fromont J.-C., Serrano R., Bonnemain J.-L., 1995. Control of vascular sap pH by the vessel-associated cells in woody species. Plant Physiol. 108, 913-918.
  • Fuchs M., Van Bel A. J. E., Ehlers K., 2010a. Season-associated modifications in symplasmic organization of the cambium in Populus nigra. Ann. Bot. 105, 375-387.
  • Fuchs M., Ehlers K., Will T., Van Bel A. J. E., 2010b. Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra. Ann. Bot. 106, 385-394.
  • Ghouse A. K. M., Yunus M., 1974. The ratio of ray and fusiform initials in some woody species of the Ranalian complex. Bull. Torrey Bot. Club 101, 363-366.
  • Gregory R. A., 1978. Living elements of the conducting secondary xylem of sugar maple ( Acer saccharum Marsh.). IAWA Bull. 4, 65-69.
  • Hejnowicz Z., 1973. Anatomia rozwojowa drzew. Wydawnictwo Naukowe PWN, Warszawa.
  • Hejnowicz Z., 2002. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. Wydawnictwo Naukowe PWN, Warszawa.
  • IAWA Committee, 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull. 10, 219-332.
  • Kendrov G. B., 2012. Functioning wood. Wulfenia 19, 57-95.
  • Korolev A. V., Tomos A. D., Farrar J. F., 2000. The trans-tissue pathway and chemical fate of 14 C photoassimilate in carrot taproot. New Phytol. 147, 299-306.
  • Lachaud S., Maurousset L., 1996. Occurrence of plasmodesmata between differentiating vessels and other xylem cells of Sorbus torminalis L. Crantz and their fate during xylem maturation. Protoplasma 191, 220-226.
  • Lev-Yadun S., Aloni R., 1991. Polycentric vascular rays in Suaeda monoica and the control of ray initiation and spacing. Trees 5, 22-29.
  • Lev-Yadun S., Aloni R., 1995. Differentiation of the ray system in woody plants. Bot. Rev. 61, 45-84.
  • Liesche J., Schulz A., 2013. Symplasmic transport in phloem loading and unloading. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Sci. Business Media, New York, 133-164.
  • Metcalfe C. R., Chalk L., 1983. Anatomy of dicotyledons. 2nd ed. Wood structure and conclusion of the general introduction. Oxford: Clarendon; 1983.
  • Murakami Y., Funada R., Sano Y., Ohtani J., 1999. The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann. Bot 84, 429-435.
  • Nagai S., Utsumi Y., 2012. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). Am. J. Bot. 99, 1553-1561.
  • Nardini A., Lo Gullo M. A., Salleo S., 2011. Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci. 180, 604-611.
  • Rinne P. L. H., Van der Schoot C., 1998. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125, 1477-1485.
  • Romberger J. A., Hejnowicz Z., Hill J. F., 1993. Plant structure: function and development. Springer-Verlag, Berlin, Heidelberg.
  • Sano Y., Okamura Y., Utsumi Y., 2005. Visualizing water-conduction pathways of living trees: selection of dyes and tissue preparation methods. Tree Physiol. 25, 269-275.
  • Sauter J. J., 2000. Photosynthate allocation to the vascular cambium: facts and problems. [W:]. Cell and molecular biology of wood formation. Savidge R. A., Barnett J. R., Napier R., (red.). BIOS Scientific, Oxford, 71-83.
  • Sauter J. J., Kloth S., 1986. Plasmodesmatal frequency and radial translocation rates in ray cells of poplar ( Populus x canadensis Moench 'robusta'). Planta168, 377-380.
  • Sauter J. J., Iten W., Zimmermann M. H., 1973. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can. J. Bot. 51, 1-8.
  • Secchi F., Zwieniecki M. A., 2011. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ. 34, 514-524.
  • Sokołowska K., 2005. Regulacja łączności symplastowej w procesach wzrostu i rozwoju roślin. Post. Biol. Kom. 32, 603-616.
  • Sokołowska K., 2013. Symplasmic transport in wood: the importance of living xylem cells. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 101-132.
  • Sokołowska K., Zagórska-Marek B, 2007. Seasonal changes in the degree of symplasmic continuity between the cells in cambial region of Acer pseudoplatanus and Ulmus minor. Acta Soc. Bot. Pol. 76, 277-286.
  • Sokołowska K., Zagórska-Marek B., 2012. Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula x p. tremuloides (Salicaceae). Am. J. Bot. 99, 1-11.
  • Sokołowska K, Brysz A. M., Zagórska-Marek B., 2013. Spatial pattern of long-distance symplasmic transport and communication in trees. Plant Signal. Behav. 8, e26191-e26191.
  • Sowiński P., 2013. Characteristics of symplasmic transport. [W:] Symplasmic transport in vascular plants. Sokołowska K., Sowiński P. (red.). Springer Science+Business Media, New York, 1-40.
  • Spicer R., 2014. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J. Exp. Bot. 65, 1829-1848.
  • Starck Z., 2008. Funkcja tkanek przewodzących: zaopatrzenie w substancje pokarmowe i udział w koordynacji procesów w roślinach. Kosmos 57, 67-83.
  • Van Bel A. J. E., 1990. Xylem-phloem exchange via the rays: the undervalued route of transport. J. Exp. Bot. 41, 631-644.
  • Van Bel A. J. E., Van Rijen H. V. M., 1994. Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192, 165-175.
  • Van Bel A. J. E., Ehlers K., 2005. Electrical signalling via plasmodesmata. [W:] Plasmodesmata. Oparka K. J. (red.). Blackwell Publishing Ltd, Oxford, 263-278.
  • Van der Schoot C., Van Bel A. J. E., 1990. Mapping membrane potential differences and dye-coupling in intermodal tissues of tomato ( Solanum lycopersicum L.). Planta 182, 9-21.
  • Wojtaszek P. 2007. Komórka w organizmie. [W:] Wojtaszek P., Woźny A., Ratajczak L., (red.) Biologia komórki roślinnej. Funkcja. Wydawnictwo Naukowe PWN, Warszawa, 512-558.
  • Yang K-C., 1978. The fine structure of pits in yellow birch ( Betula alleghaniensis Britton ). IAWA Bull. 4, 71-77.
  • Ziegler H., 1964. Storage, mobilization and distribution of reserve material in trees. [W:] Zimmermann M. H., (red.) The formation of wood in forest trees. Academic Press, New York, 303-320.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p445kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.