Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 3 | 415-429

Article title

Ściana komórki roślinnej - struktura z przyszłością

Authors

Content

Title variants

EN
Plant cell wall - a green future structure

Languages of publication

PL EN

Abstracts

PL
Ściana komórkowa, oparta na celulozowym szkielecie, jest charakterystyczną strukturą roślin lądowych i glonów. Przez trzysta lat uważana była za bierną i ograniczającą wzrost i rozwój komórek. Dziś wiadomo, że ściana, otaczając i zamykając każdą komórkę, umożliwia jej także kontakt z sąsiednimi komórkami i ze środowiskiem, przenikanie substancji i cząsteczek sygnałowych, kontroluje kierunek wzrostu, nadając kształt komórce i całej roślinie, a także chroni przed atakami patogenów i niekorzystnymi czynnikami środowiska. Aby właściwie wypełniać te zadania, ściana musi być nie tylko dynamiczną i ściśle regulowaną strukturą, odbierającą i odpowiadającą na wewnętrzne i zewnętrzne sygnały, ale jak uważają niektórzy, całym systemem, "inteligentną granicą", zdolną do koordynacji procesów wzrostu i rozwoju indywidualnych komórek, prowadzących do odpowiedzi całej rośliny na zmieniające się warunki środowiska. To skomplikowane zadanie jest realizowane przez ściany, których skład różni się w zależności od typu komórki, jej stadium rozwoju czy nawet pory roku. Obecna praca jest próbą przybliżenia czytelnikowi choć niewielkiej części nowo poznanych zagadnień, związanych ze ścianą, jej rolą, mechanizmami funkcjonowania oraz praktycznym wykorzystaniem w rolnictwie, przemyśle spożywczym, papierniczym czy energetycznym.
EN
A distinguishing feature of plant and algae cells is the presence of a cellulose-rich wall. For three hundred years plant cell walls were described as static and rigid. Today cell walls are considered as very dynamic structures which enclose each cell still allowing transfer of solutes and signaling molecules between the cells themselves and the cells and environment, control of cells and the whole plant form, growth and development; they play also a significant role in plant defense and their responses to environmental stresses. To fulfill these functions plant cell walls must be a tightly regulated dynamic system in charge of sensing, processing and responding to internal and external cellular signals, functioning as an "intelligent frontier" capable to co-ordinate growth of the whole-plant by optimizing growth and differentiation of individual cells. This paper attempts to review a small part of current works aimed to elucidate the role and functions of plant cell walls and their practical implications for obtainment of plant-based products: food, fodder, textiles, paper, biopolymers and biofuels.

Journal

Year

Volume

64

Issue

3

Pages

415-429

Physical description

Dates

published
2015

Contributors

  • Zakład Ekofizjologii Molekularnej Roślin, Instytut Biologii Eksperymentalnej i Biotechnologii Roślin, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska

References

  • Albenne C., Canut H., Boudart G., Zhang Y., Clemente H. S., Pont-Lezica R., 2009. Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. Mol. Plant 2, 977-989.
  • Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A., 2010. Cell walls and plant anatomy. [W:] Plant cell walls: from chemistry to biology. Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A. (red.).Garland Science, Taylor and Francis Group, LLC, New York, 1-42.
  • Anderson C. M, Wagner T. A, Perret M., He Z.-H., He D., Kohorn B. D., 2001. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant. Mol. Biol. 47, 197-206.
  • Agi (Arabidopsis Genome Initiative), 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
  • Arioli T., Peng L., Betzner A., Burn J., Wittke W., Herth W., Camilleri C., Hofte H., Plazinski J., Birch R., Cork A., Glover J., Redmond J., Williamson R., 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717-720.
  • Atmodjo M. A., Hao Z., Mohnen D., 2013. Evolving views of pectin biosynthesis. Ann. Rev. Plant Biol. 64, 747-779.
  • Bamforth C. W., 1993. β-Glucans and β-glucanases in malting and brewing: practical aspects. Brewers Digest 69, 12-16.
  • Baskin T. I., 2000. The Cytoskeleton. [W:] Biochemistry and molecular biology of plants. Buchanan B. B, Gruissem W, Jones R. L. (red.). American Society of Plant Physiologists, Rockville, 202-258.
  • Baskin T. I., 2001. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215, 150-171.
  • Baskin T. I., Betzner A. S., Hoggart R., Cork A., Williamson R. E., 1992. Root morphology mutants in Arabidopsis thaliana. Austr. J. Plant Physiol. 19, 427-437.
  • Baucher M., Halpin C., Petit-Conil M., Boerjan W., 2003. Lignin: genetic engineering and impact on pulping. Crit. Rev. Bioch. Mol. Biol. 38, 305-350.
  • Boudet A.-M., 2002. Lignin genetic engineering: a way to better understand lignification beyond applied objectives. [W:] Plant biotechnology and transgenic plants. Oksman-Caldentey K.-M., Barz W. H. (red.). New York/Basle: Marcel Dekker Inc., 477-496.
  • Boudet A. M., Kajita S., Grima-Pettenati J., Goffner G., 2003. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 8, 576-581.
  • Buckeridge M. S. C., Rayon B., Urbanowicz M. A. S. T., Carpita N., 2004. Mixed linkage glucan (1-3)(1-4)-β-d-glucans of grasses. Cereal Chem. 81, 115-127.
  • Burton R., Gibeaut D., Bacic A., Findlay K., Roberts K., Hamilton A., Baulcombe D., Fincher G., 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12, 691-706.
  • Carpita N., Gibeaut D., 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1-30.
  • Carpita N. C., Defernez M., Findlay K., Wells B., Shoue D. A., Catchpole G., Wilson R. H., McCann M. C., 2001. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127, 551-565.
  • Cawley R. W., 1964. The role of wheat flour pentosans in baking. II. Effect of added flour pentosans and other gums on gluten starch loaves. J. Sci. Food Agric. 15, 834-838.
  • Chen X., Grandont L., Li H., Hauschild R., Paque S., Abuzeineh A., 2014. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516, 90-93.
  • Choct M., Hughes R. J., Trimble R. P., Angkanaporn K., Annison G., 1995. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. J. Nutr. 125, 485-492.
  • Chou Y.-H., Pogorelko G., Young Z. T., Zabotina O. A., 2015. Protein-protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. Plant Cell Physiol. 56, 255-267.
  • Chu Z., Chen H., Zhang Y., Zhang Z., Zheng N., 2007. Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143, 213-224.
  • Cosgrove D. J., 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850-861.
  • Cosgrove D. J., 2014. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122-131.
  • Cui S. W., Wang Q., 2009. Cell wall polysaccharides in cereals: chemical structures and functional properties. Struct. Chem. 20, 291-297.
  • Delmer D. P., Amor Y., 1995. Cellulose biosynthesis. Plant Cell 7, 987-1000.
  • Demura T., 2014. Tracheary element differentiation. Plant Biotechnol. Rep. 8, 17-21.
  • Demura T., Ye Z.-H., 2010. Regulation of plant biomass production. Curr. Opin. Plant Biol. 13, 299-304.
  • Desprez T., Juraniec M., Crowell E., Jouy H., Pochylova Z., Parcy F., Höfte H., Gonneau M., Vernhettes S., 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 15572-15577.
  • Dhugga K. S., 2005. Plant Golgi cell wall synthesis: from genes to enzyme activities. Proc. Natl. Acad. Sci. USA 102, 1815-1816.
  • Ding S.-Y., Liu Y.-S., Zeng Y., Himmel M. E., Baker J. O., Bayer E. A., 2012. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055-1060.
  • Dixit R., Cyr R., 2004. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16, 3274-3284.
  • Djerbi S., Lindskog M., Arvestad L., Sterky F., Teeri, T. T., 2005. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221, 739-746.
  • Doblin M. S., Pettolino F., Bacic A., 2010. Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 37, 357-381.
  • Engelsdorf T., Hamann T., 2014. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann. Bot. 114, 1339-1347.
  • Farrokhi N., Burton R. A., Brownfield L., Hrmova S., Wilson S. M., Bacic A., Fincher G. P., 2006. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotech. J. 4, 145-167.
  • Fry S. C., Nesselrode B. H. W. A., Miller J. G., Mewburn B. R., 2008. Mixed-linkage (1,3)(1,4)-β-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytol. 179, 104-115.
  • Fujimoto M., Suda Y., Vernhettes S., Nakano A., Ueda T., 2015. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complex in Arabidopsis thaliana. Plant Cell Physiol. 56, 287-298.
  • Gardiner J. C., Taylor N. G., Turner S. R., 2003. Control of cellulose synthase complex localization in developing xylem. Plant Cell 15, 1740-1748.
  • Gillmor C. S., Lukowitz W., Brininstool G., Sedbrook J. C., Hamann T., Poindexter P., Somerville C., 2005. Glycosylphosphatidylinositol anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17, 1128-1140.
  • Gomez L. D., Steele-King C. G., Mcqueen-Mason S. J., 2008. Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol. 178, 473-485.
  • Grabber J. H., 2005. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820-831.
  • Hématy K., Sado P.-E., Van Tuinen A., Rochange S., Desnos T., Balzergue S., Pelletier S., Renou J.-P., Höfte H., 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17, 922-931.
  • Henrissat B., Coutinho P. M., Davies G.J., 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol. 47, 55-72.
  • Himmel M. E., Ding S.-Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., Foust T. D., 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804-807.
  • Hodge A. M., English D. R., O'dea K., Giles G. G., 2004. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27, 2701-2706.
  • Hooke R., 1665. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. Jo. Martyn and Ja. Allestry, London.
  • Horio T., Murata T., 2014. The role of dynamic instability in microtubule organization. Front. Plant Sci. 5, 511.
  • Humphrey T. V, Bonetta D. T, Goring D. R, 2007. Sentinels at the wall: cell wall receptors and sensors. New Phytol. 176, 7-21.
  • Igarashi K., Uchihashi T., Koivula A., Wada M., Kimura S., Okamoto T., 2011. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333, 1279-1282.
  • Jacobs A., Lipka V., Burton R., Panstruga R., Strizhov N., Schulze-Lefert P., Fincher G., 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15, 2503-2513.
  • Jamet E., Canut H., Boudart G., Pont-Lezica R. F., 2006. Cell wall proteins: a new insight through proteomics. Trends Plant Sci. 11, 33-39.
  • Keegstra K., 2010. Plant cell walls. Plant Physiol. 154, 483-486.
  • Keegstra K., Talmadge K.W., Bauer W.D., Albersheim P., 1973. The structure of plant cell walls III. A model of the walls of suspension cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188-197.
  • Kern M., Mcgeehan J. E., Streeter S. D., Martin R. N. A., Besser K., Elias L., Eborall W., Malyon G. P., Payne C. M., Himmel M. E., Schnorr K., Beckham G. T., Cragg S. M., Bruce N. C., Mcqueen-Mason S. J., 2013. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc. Natl. Acad. Sci. USA 18, 10189-10194.
  • Kido N., Yokoyama R., Yamamoto T., Furukawa J., Iwai H., Satoh S., 2015. The matrix polysaccharide (1,3)(1,4)-β-d-glucan is involved in silicon-dependent strengthening of rice cell wall. Plant Cell Physiol. 56, 268-276.
  • Kohorn B. D., 2000. Plasma membrane-cell wall contacts. Plant Physiol. 124, 31-38.
  • Kohorn B. D., Kohorn S. L., 2012. The cell wall-associated kinases,WAKs, as pectin receptors. Front. Plant Sci. 3, 88.
  • Lee S. J., Saravanan R. S., Damasceno C. M. B., Yamane H., Kim B.-D., Rose J. K. C., 2004. Digging deeper into the plant cell wall proteome. Plant Physiol. Bioch. 42, 979-988.
  • Lerouxel O., Cavalier D. M., Liepman A. H., Keegstra K., 2006. Biosynthesis of plant cell wall polysaccharides - a complex process. Curr. Op. Plant Biol. 9, 621-630.
  • Li S. D., Lei L., Somerville C. R., Gu Y., 2012. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl. Acad. Sci. USA 109, 185-190.
  • Liepman A. H., Wilkerson C. G., Keegstra K., 2005. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221-2226.
  • Lloyd C., Chan J., 2008. The parallel lives of microtubules and cellulose microfibrils. Curr. Op. Plant Biol. 11, 641-646.
  • Lukowitz W., Nickle T. C., Meinke D. W., Last R. L., Conklin P. L., Somerville C. R., 2001. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA, 98, 2262-2267.
  • Majewska-Sawka A., Nothnagel E. A., 2000. The multiple roles of arabinogalactan proteins in plant development. Plant Physiol. 122, 3-10.
  • Mccartney L., Blake A. W., Flint J., Bolam D. N., Boraston A. B., Gilbert H. J., Knox J. P., 2006. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc. Natl. Acad. Sci. USA 103, 4765-4770.
  • Mewalal R., Mizrachi E., Mansfield S. D., Myburg A. A., 2014. Cell wall related proteins of unknown function: missing links in plant cell wall development. Plant Cell Physiol. 55, 1031-1043.
  • Milani P., Gholamirad M., Traas J., Arnéodo A., Boudaoud A., Argoul F., Hamant O., 2011. In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J. 67, 1116-1123.
  • Mir Derikvand M., Sierra J. B., Ruel K., Pollet B., Do C.-T., Thevenin J., Buffard D., Jouanin L., Lapierre C., 2008. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 5, 943-956.
  • Mohnen D., 2008. Pectin structure and biosynthesis. Curr. Op. Plant Biol. 11, 266-277.
  • Moller I., Marcus S. E., Haeger A., Verhertbruggen Y., Verhoef R., Schols H., Ulvskov P., Mikkelsen J. D., Knox J. P., Willats W., 2008. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycocon. J. 25, 37-48.
  • Nishitani K., 1997. The role of endoxyloglucan transferase in the organization of plant cell walls. Int. Rev. Cytol. 173, 157-206.
  • Nishitani K., Demura T., 2015. An emerging view of plant cell walls as an apoplastic intelligent system. Plant Cell Physiol. 56, 177-179.
  • Oda Y., 2015. Cortical microtubule rearrangements and cell wall patterning. Front. Plant Sci. 6, 236.
  • Oda Y., Iida Y., Nagashima Y., Sugiyama Y., Fukuda H., 2015. Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric Golgi complex 2 protein. Plant Cell Physiol. 56, 277-286.
  • Oikawa A., Lund C. H., Sakuragi Y., Scheller H. V., 2013. Golgi-localized enzyme complexes for plant cell wall biosynthesis. Trends Plant Sci. 18, 49-58.
  • Paredez A. R., Somerville C. R., Ehrhardt D. W., 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491-1495.
  • Paredez A. R, Persson S., Ehrhardt D. W., Somerville C. R., 2008. Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol. 147, 1723-1734.
  • Park Y. B., Cosgrove D. J., 2015. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180-194.
  • Pattathil S., Avci U., Baldwin D., Swennes A. G., Mcgill J. A., Popper Z., Bootten T., Albert A., Davis R. H., Chennareddy C., Dong R., O'shea B., Rossi R, Leoff C., Freshour G., Narra R., O'neil M., York W. S., Hahn M. G., 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153, 514-525.
  • Paulsen B.S., 2002. Plant polysaccharides with immunostimulatory activities. Curr. Org. Chem. 5, 939-950.
  • Pear J., Kawagoe Y., Schreckengost W., Delmer D., Stalker D., 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93, 12637-12642.
  • Pilate G., Guiney E., Holt K., Petit-Conil M., Lapierre C., Leplé J.-C., Pollet B., Mila I., Webster E. A., Marstorp H. G., Hopkins D.W., Jouanin L., Boerjan W., Schuch W., Cornu W., Halpin C., 2002. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20, 607-612.
  • Popper Z. A. 2008. Evolution and diversity of green plant cell walls. Curr. Opin. Plant Biol. 11, 286-292.
  • Popper Z. A., Michel G., Herve C., Domozych D. S., Willats W. G. T., Tuohy M. G., Kloareg B., Stengel D. B., 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567-590.
  • Robert S., Mouille G., Höfte H., 2004. The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose deficient Arabidopsis mutants. Cellulose 11, 351-364.
  • Roudier F., Fernandez A. G., Fujita M., Himmelspach R., Borner G. H. H., Schindelman G., Song S., Baskin T. I., Dupree P., Wasteneys G. O., 2005. COBRA, an Arabidopsis extracellular glycosyl-phosphatidylinositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17, 1749-1763.
  • Sardar H. S., Yang J., Showalter A. M., 2006. Molecular interactions of arabinogalactan proteins with cortical microtubules and F-Actin in bright yellow-2 tobacco cultured cells. Plant Physiol. 142, 1469-1479.
  • Sarkar P., Bosneaga E., Auer M., 2009. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J. Exp. Bot. 60, 3615-3635.
  • Saxena I., Brown R. J. 2005. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. 96, 9-21.
  • Sederoff R., 1999. Building better trees with antisense. Nat. Biotechnol. 17, 750-751.
  • Seifert G. J., Roberts K., 2007. The biology of arabinogalactan proteins. Ann. Rev. Plant Biol. 58, 137-161.
  • Shaw S. L., Kamyar R., Ehrhardt D. W., 2003. Sustained microtubule tread- milling in Arabidopsis cortical arrays. Science 300, 1715-1718.
  • Somerville C., 2006. Cellulose synthesis in higher plants. Ann. Rev. Cell Dev. Biol. 22, 53-78.
  • Somerville C., Bauer S., Brininstool G., Facette M., Hamann T., Milne J., Osborne E., Paredez A., Persson S., Raab T., Vorwerk S., Youngs H., 2004. Toward a systems approach to understanding plant cell walls. Science 306, 2206-2211.
  • Sugimoto K., Himmelspach R., Williamson R. E., Wasteneys G. O., 2003. Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15, 1414-1429.
  • Sumiyoshi M., Inamura T., Nakamura A., Aohara T., Ishii T., Satoh S., 2015. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). Plant Cell Physiol. 56, 232-241.
  • Szyjanowicz P. M., Mckinnon I., Taylor N. G., Gardiner J., Jarvis M. C., Turner S. R., 2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37, 730-740.
  • Taylor N. G., Scheible W. R., Cutler S., Somerville C. R., Turner S. R., 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769-779.
  • Taylor N. G., Gardiner J. C., Whiteman R., Turner S. R. 2004. Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11, 329-338.
  • Trogh I., Sorensen J. F., Courtin C. M., Delcour J. A., 2004. Impact of inhibition sensitivity on endoxylanase functionality in wheat flour breadmaking. J. Agric. Food Chem. 52, 4296-4302.
  • Turner S. R., Somerville C. R., 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689-701.
  • Usadel B., Fernie A. R., 2013. The plant transcriptome - from integrating observations to models. Front. Plant Sci. 4, 48.
  • Van Der Rest B., Danoun S., Boudet A.-M., Rochange S. F., 2006. Downregulation of cinnamoyl-CoA reductase in tomato Solanum lycopersicum L. induces dramatic changes in soluble phenolic pools. J. Exp. Bot. 57, 1399-1411.
  • Von Wettstein D., Warner J., Kannangara C. G., 2003. Supplements of transgenic malt or grain containing (1,3-1,4)-β-glucanase increase the nutritive value of barley-based broiler diets to that of maize. Brit. Poultry Sci. 44, 438-449.
  • Xu S.-L., Rahman A., Baskin T. I., Kieber J. J., 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 3065-3079.
  • Xu T., Dai N., Chen J., Nagawa S., Cao M., Li H., 2014.Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025-1028.
  • Yamada H., 2000. Bioactive arabinogalactan-proteins and related pectic polysaccharides in Sino-Japanese herbal medicines. [W:] Cell and developmental biology of arabinogalactan-proteins (Proceedings of the 20th Symposium in Plant Physiology, Riverside, CA USA), Kluwer Academic/Plenum Publishers, New York, 221-229.
  • Yokoyama R., Nishitani K., 2004. Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol. 45, 1111-1121.
  • Yokoyama R., Shinohara N., Asaoka R., Narukawa H., Nishitani K., 2014. The biosynthesis and function of polysaccharide components of the plant cell wall. [W:] Plant cell wall patterning and cell shape. Fukuda H. (red.), John Wiley & Sons, Inc., 1-34.
  • Youl J. J., Bacic A., Oxley D., 1998. Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proc. Natl. Acad. Sci. USA 95, 7921-7926.
  • Zhong R., Ye Z.-H., 2015. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 56, 195-214.
  • Zhong R., Lee C., Ye Z.-H., 2010. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 15, 625-631.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p415kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.