Preferences help
enabled [disable] Abstract
Number of results
2015 | 64 | 3 | 387-399
Article title

"Napędzane światłem" - od fotosyntezy do fotoogniwa

Title variants
Driven by light - from photosynthesis to photocell unit
Languages of publication
Fotosynteza to najważniejszy proces biologiczny, polegający na przetworzeniu energii światła słonecznego na dostępną dla podtrzymania życia energię wiązań chemicznych. W niniejszej pracy omówiono podstawowe założenia procesu, barwniki fotosyntetyczne i białkowe kompleksy błonowe. Zwrócono szczególną uwagę na charakterystyczne dla zajścia procesu mechanizmy molekularne, by tym łatwiej wprowadzić czytelnika w niełatwe zagadnienia sztucznej fotosyntezy. Omówiono podstawowe strategie czerpiące z naturalnego procesu: biomimetyczne, opierające się na naśladowaniu gotowych układów naturalnych, oraz takie, które używając sztucznie syntetyzowanych, uproszczonych, komponentów są zgodne z ogólną koncepcją procesu fotosyntetycznego. W dobie rozwijających się nauk energetycznych stworzenie wydajnego, taniego i przyjaznego dla środowiska ogniwa słonecznego przybliża się coraz bardziej.
Photosynthesis is the main biological process driven by light, which converts light energy into chemical one that can be later used to fuel organisms’ activities. In this paper, I describe molecular principles underlying this process as well as involved therein photosynthetic pigments and membrane proteins complexes. Photosynthetic processes are widely used as an inspiration for artificial ones, not only by attempts to mimick the natural processes but also by building simpler ones from artificial components. Research developments in this field may lead to to the discovery of an efficient, cheap and environmental friendly photocell unit.
Physical description
  • Amunts A., Nelson N., 2009. Plant photosystem I design in the light of evolution. Structure 17, 637-650.
  • Blankenship R., 2014. Molecular Mechanisms of Photosynthesis. John Wiley & Sons, Chichester, UK.
  • Chen M., Schliep M., Willows R. D., Cai Z. L., Neilan B. A., Scheer H., 2010. A red-shifted chlorophyll. Science 329, 1318-1319.
  • Chida H., Nakazawa A., Akazaki H., Hirano T., Suruga K., Ogawa M., Satoh T., Kadokura K., Yamada S., Hakamata W., Isobe K., Ito T., Ishii R., Nishio T., Sonoike K., Oku T., 2007. Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 48, 948-957.
  • Ciesielski P. N., Scott A. M., Faulkner C. J., Berron B. J., Cliffel D. E., Jennings G. K., 2008. Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. ACS Nano 2, 2465-2472.
  • Delong E. F., Beja O., 2010. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8, e1000359.
  • Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O., Taylor F. J., 2004. The evolution of modern eukaryotic phytoplankton. Science 305, 354-360.
  • Fujimoto R., Taylor J. M., Shirasawa S., Peacock W. J., Dennis E. S., 2012. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc. Natl. Acad. Sci. USA 109, 7109-7114.
  • Fukuzumi S., Kojima T., 2008. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. J. Biol. Inorg. Chem. 13, 321-333.
  • Giaimo J. M., Gusev A. V., Wasielewski M. R., 2002. Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation. J. Am. Chem. Soc. 124, 8530-8531.
  • Gunderson V. L., Smeigh A. L., Kim C. H., Co D. T., Wasielewski M. R., 2012. Electron transfer within self-assembling cyclic tetramers using chlorophyll-based donor-acceptor building blocks. J. Am. Chem. Soc. 134, 4363-4372.
  • He Z., Wu H., Cao Y., 2014. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. Adv. Mater. 26, 1006-1024.
  • Hou H. J., Allakhverdiev S. I., Najafpour M. M., Govindjee, 2014. Current challenges in photosynthesis: from natural to artificial. Front. Plant Sci. 5, 232.
  • Lanyi J. K., 2004. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665-688.
  • Leister D., 2012. How Can the Light Reactions of Photosynthesis be Improved in Plants? Front. Plant Sci. 3, 199.
  • Martinson A. B., Hamann T. W., Pellin M. J., Hupp J. T., 2008. New architectures for dye-sensitized solar cells. Chemistry 14, 4458-4467.
  • McConnell I., Li G., Brudvig G. W., 2010. Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434-447.
  • Melis A., 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272-280.
  • Murata N., Allakhverdiev S. I., Nishiyama Y., 2012. The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, alpha-tocopherol, non-photochemical quenching, and electron transport. Biochim. Biophys. Acta 1817, 1127-1133.
  • Nelson N., Junge W., 2015. Structure and Energy Transfer in Photosystems of Oxygenic Photosynthesis. Annu. Rev. Biochem. DOI: 10.1146/annurev-biochem-092914-041942.
  • Nocera D. G., 2012. The artificial leaf. Acc. Chem. Res. 45, 767-776.
  • Pesaresi P., Scharfenberg M., Weigel M., Granlund I., Schroder W. P., Finazzi G., Rappaport F., Masiero S., Furini A., Jahns P., Leister D., 2009. Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol. Plant 2, 236-248.
  • Pribil M., Pesaresi P., Hertle A., Barbato R., Leister D., 2010. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol 8, e1000288.
  • Pribil M., Labs M., Leister D., 2014. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955-1972.
  • Roger C., Muller M. G., Lysetska M., Miloslavina Y., Holzwarth A. R., Wurthner F., 2006. Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the “green gap”. J. Am. Chem. Soc. 128, 6542-6543.
  • Shen J. R., 2015. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. Annu. Rev. Plant Biol. 66, 23-48.
  • Ullman A. M., Liu Y., Huynh M., Bediako D. K., Wang H., Anderson B. L., Powers D. C., Breen J. J., Abruna H. D., Nocera D. G., 2014. Water oxidation catalysis by Co(II) impurities in Co(III)4O4 cubanes. J. Am. Chem. Soc. 136, 17681-17688.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.