Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 1 | 31-45

Article title

Proteazy serynowe i ich klasyfikacja według systemu merops

Content

Title variants

Languages of publication

PL EN

Abstracts

PL
Proteazy serynowe stanowią prawie jedną trzecią wszystkich enzymów hydrolizujących wiązanie peptydowe. Nazwa tych proteaz pochodzi od obecności nukleofilowego aminokwasu seryny, znajdującej się w miejscu aktywnym enzymu, która atakuje grupę karbonylową wiązania peptydowego tworząc produkt pośredni reakcji tzw. acylo-enzym. Ze względu na to, że reakcje katalizowane przez proteazy są bardzo złożone, Rawlings i Barrett zaproponowali bardzo precyzyjny system opisujący klasyfikacje enzymów proteolitycznych - MEROPS. Według tego systemu proteazy są podzielone na klany, w których następnie wyróżnione są rodziny. Najnowsza baza MEROPS podzieliła proteazy serynowe na 15 klanów, w których znajdują się łącznie 53 rodzin. Celem tej pracy jest krótka charakterystyka proteaz serynowych oraz ich podział na poszczególne klany.
EN
Proteolytic enzymes, known also as the proteases, proteinases or peptidases, belong to the class of hydrolases involved in hydrolytic degradation of peptide bonds. These enzymes have been identified in both prokaryotic and eukaryotic cells. Typical human genome contains about 2% of the genes that are responsible for encoding of proteolytic enzymes. Serine proteases represent almost one-third of all proteolytic enzymes. The name of these proteases is derived from the presence of the nucleophilic amino acid: serine located in the active site of the enzyme, which attacks the carbonyl group of the peptide bond forming thereby an intermediate called acyl-enzyme. Due to the fact that the reactions catalyzed by proteases are very complex Rawlings and Barrett proposed a high precision classification system for proteolytic enzymes called MEROPS. Under this system, proteases are divided into clans and families. The recent MEROPS database divided serine proteases into 15 clans containing a together 53 families. The aim of this paper is all short description of serine proteases and their division into different clans.

Keywords

Journal

Year

Volume

64

Issue

1

Pages

31-45

Physical description

Dates

published
2015

Contributors

author
  • Katedra Biochemii Ogólne, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź, Polska
  • Katedra Biochemii Ogólne, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź, Polska
author

References

  • Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
  • Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N., 1989. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol. Biol 209, 711-734.
  • Arand M., Cronin A., Adamska M., Oesch F., 2005. Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol. 400, 569-588.
  • Barends T. R., Yoshida H., Dijkstra B. W., 2004. Three-dimensional structures of enzymes useful for beta-lactam antibiotic production. Curr. Opin. Biotechnol. 15, 356-363.
  • Barrett A. J., 1999. Peptidases: a view of classification and nomenclature. [W:] Proteases: New Perspectives. Turk V. (red.). Birkhauser Verlag, Basel/Switzerland, 1-12.
  • Barrett A. J., Tolle D. P., Rawlings N. D., 2003. Managing peptidases in the genomic era. Biol. Chem. 384, 873-882.
  • Beebe K. D., Shin J., Peng J., Chaudhury C., Khera J., Pei D., 2000. Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry 39, 3149-3155.
  • Besche H., Zwickl P., 2004. The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site. Eur. J. Biochem. 271, 4361-4365.
  • Birktoft J. J., Blow D. M., Henderson R., Steitz T. A., 1970. I. Serine proteinases. The structure of alpha-chymotrypsin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 257, 67-76.
  • Botos I., Melnikov E. E., Cherry S., Tropea J. E., Khalatova A. G., Rasulova F., Dauter Z., Maurizi M. R., Rotanova T. V., Wlodawer A., Gustchina A., 2004. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140-8148.
  • Brandstetter H., Kim J. S., Groll M., Huber R., 2001. Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466-470.
  • Bryan P. N., 2000. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543, 203-222.
  • Carlos J. L., Paetzel M., Brubaker G., Karla A., Ashwell C. M., Lively M. O., Cao G., Bullinger P., Dalbey R. E., 2000. The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. J. Biol. Chem. 275, 38813-38822.
  • Chang G. W., Stacey M., Kwakkenbos M. J., Hamann J., Gordon S., Lin H. H., 2003. Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett. 547, 145-150.
  • Chen P., Tsuge H., Almassy R. J., Gribskov C. L., Katoh S., Vanderpool D. L., Margosiak S. A., Pinko C., Matthews D. A., Kan C. C., 1996. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86, 835-843.
  • Dalbey R. E., Lively M. O., Bron S., van Dijl J. M., 1997. The chemistry and enzymology of the type I signal peptidases. Protein Sci. 6, 1129-1138.
  • Deacon C. F., Wamberg S., Bie P., Hughes T. E., Holst J. J., 2002. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. J. Endocrinol. 172, 355-362.
  • Di Cera E., 2009. Serine proteases. IUBMB. Life 61, 510-515.
  • Eddy S. R., 2008. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS. Comput. Biol. 4, e1000069.
  • Fehlhammer H., Bode W., Huber R., 1977. Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. J. Mol. Biol. 111, 415-438.
  • Fontoura B. M., Dales S., Blobel G., Zhong H., 2001. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc. Natl. Acad. Sci. USA 98, 3208-3213.
  • Freeman M., 2008. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191-210.
  • Garcia-Montoya I. A., Cendon T. S., Arevalo-Gallegos S., Rascon-Cruz Q., 2012. Lactoferrin a multiple bioactive protein: an overview. Biochim. Biophys. Acta 1820, 226-236.
  • Goffin C., Ghuysen J. M., 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079-1093.
  • Gonzalez-Chavez S. A., Arevalo-Gallegos S., Rascon-Cruz Q., 2009. Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33, 301-308.
  • Gray J. X., Haino M., Roth M. J., Maguire J. E., Jensen P. N., Yarme A., Stetler-Stevenson M. A., Siebenlist U., Kelly K., 1996. CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J. Immunol. 157, 5438-5447.
  • Gross G. J., Nithipatikom K., 2009. Soluble epoxide hydrolase: a new target for cardioprotection. Curr. Opin. Investig. Drugs 10, 253-258.
  • Guex N., Peitsch M. C., 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
  • Hakansson K., Wang A. H., Miller C. G., 2000. The structure of aspartyl dipeptidase reveals a unique fold with a Ser-His-Glu catalytic triad. Proc. Natl. Acad. Sci. USA 97, 14097-14102.
  • Hedstrom L., 2002. Serine protease mechanism and specificity. Chem. Rev. 102, 4501-4524.
  • Hewitt L., Kasche V., Lummer K., Lewis R. J., Murshudov G. N., Verma C. S., Dodson G. G., Wilson K. S., 2000. Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J Mol. Biol 302, 887-898.
  • Hodel A. E., Hodel M. R., Griffis E. R., Hennig K. A., Ratner G. A., Xu S., Powers M. A., 2002. The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol. Cell 10, 347-358.
  • Holmquist M., 2000. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 1, 209-235.
  • Hotelier T., Renault L., Cousin X., Negre V., Marchot P., Chatonnet A., 2004. ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins. Nucleic Acids Res. 32, D145-D147.
  • Imig J. D., 2012. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 92, 101-130.
  • Indiani C., O'Donnell M., 2013. A Proposal: Source of single strand DNA that elicits the SOS response. Front. Biosci. 18, 312-323.
  • Iwamoto M., Asakawa H., Hiraoka Y., Haraguchi T., 2010. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells 15, 661-669.
  • Johnson T. A., Qiu J., Plaut A. G., Holyoak T., 2009. Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of haemophilus influenzae immunoglobulin A1 protease. J. Mol. Biol. 389, 559-574.
  • Kelly J. A., Kuzin A. P., Charlier P., Fonze E., 1998. X-ray studies of enzymes that interact with penicillins. Cell Mol. Life Sci. 54, 353-358.
  • Kieffer T. J., Habener J. F., 1999. The glucagon-like peptides. Endocr. Rev. 20, 876-913.
  • Kieffer T. J., McIntosh C. H., Pederson R. A., 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585-3596.
  • Kim J. K., Yang I. S., Rhee S., Dauter Z., Lee Y. S., Park S. S., Kim K. H., 2003. Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42, 4084-4093.
  • Kim A. C., Oliver D. C., Paetzel M., 2008. Crystal structure of a bacterial signal Peptide peptidase. J. Mol. Biol. 376, 352-366.
  • Kop E. N., Kwakkenbos M. J., Teske G. J., Kraan M. C., Smeets T. J., Stacey M., Lin H. H., Tak P. P., Hamann J., 2005. Identification of the epidermal growth factor-TM7 receptor EMR2 and its ligand dermatan sulfate in rheumatoid synovial tissue. Arthritis Rheum. 52, 442-450.
  • Korza H. J., Bochtler M., 2005. Pseudomonas aeruginosa LD-carboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J. Biol. Chem. 280, 40802-40812.
  • Kraut J., 1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331-358.
  • Krem M. M., Di Cera E., 2001. Molecular markers of serine protease evolution. EMBO J. 20, 3036-3045.
  • Kwakkenbos M. J., Kop E. N., Stacey M., Matmati M., Gordon S., Lin H. H., Hamann J., 2004. The EGF-TM7 family: a postgenomic view. Immunogenetics 55, 655-666.
  • Larsen R. A., Knox T. M., Miller C. G., 2001. Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium. J Bacteriol. 183, 3089-3097.
  • Lassy R. A., Miller C. G., 2000. Peptidase E, a peptidase specific for N-terminal aspartic dipeptides, is a serine hydrolase. J. Bacteriol. 182, 2536-2543.
  • Lee C., Schwartz M. P., Prakash S., Iwakura M., Matouschek A., 2001. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627-637.
  • Leemans J. C., de Velde A. A., Florquin S., Bennink R. J., de B. K., van Lier R. A., van der Poll T., Hamann J., 2004. The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J. Immunol. 172, 1125-1131.
  • Lemberg M. K., 2013. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol. 23, 210-217.
  • Liao D. I., Remington S. J., 1990. Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. J. Biol. Chem. 265, 6528-6531.
  • Liao D. I., Qian J., Chisholm D. A., Jordan D. B., Diner B. A., 2000. Crystal structures of the photosystem II D1 C-terminal processing protease. Nat. Struct. Biol 7, 749-753.
  • Lin H. H., Chang G. W., Davies J. Q., Stacey M., Harris J., Gordon S., 2004. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823-31832.
  • Little J. W., 1993. LexA cleavage and other self-processing reactions. J. Bacteriol. 175, 4943-4950.
  • Luo Y., Pfuetzner R. A., Mosimann S., Paetzel M., Frey E. A., Cherney M., Kim B., Little J. W., Strynadka N. C., 2001. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106, 585-594.
  • Maes M. B., Scharpe S., De M. I., 2007. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta 380, 31-49.
  • Massoulie J., Pezzementi L., Bon S., Krejci E., Vallette F. M., 1993. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41, 31-91.
  • Matrai J., Verheyden G., Kruger P., Engelborghs Y., 2004. Simulation of the activation of alpha-chymotrypsin: analysis of the pathway and role of the propeptide. Protein Sci. 13, 3139-3150.
  • Matthews B. W., Sigler P. B., Henderson R., Blow D. M., 1967. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 214, 652-656.
  • Medina E., Wieczorek D., Medina E. M., Yang Q., Feiss M., Catalano C. E., 2010. Assembly and maturation of the bacteriophage lambda procapsid: gpC is the viral protease. J. Mol. Biol. 401, 813-830.
  • Mistry D., Stockley R. A., 2006. IgA1 protease. Int J Biochem. Cell. Biol. 38, 1244-1248.
  • Muhlenhoff M., Stummeyer K., Grove M., Sauerborn M., Gerardy-Schahn R., 2003. Proteolytic processing and oligomerization of bacteriophage-derived endosialidases. J. Biol. Chem. 278, 12634-12644.
  • Nam S. E., Kim A. C., Paetzel M., 2012. Crystal structure of Bacillus subtilis signal peptide peptidase A. J. Mol. Biol. 419, 347-358.
  • Ochoa T. J., Clearly T. G., 2004. Lactoferrin disruption of bacterial type III secretion systems. Biometals 17, 257-260.
  • Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J., 1992. The alpha/beta hydrolase fold. Protein Eng. 5, 197-211.
  • Paetzel M., Chernaia M., Strynadka N., Tschantz W., Cao G., Dalbey R. E., James M. N., 1995. Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Proteins 23, 122-125.
  • Paetzel M., Dalbey R. E., Strynadka N. C., 2000. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol. Ther. 87, 27-49.
  • Paetzel M., Dalbey R. E., Strynadka N. C., 2002. Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J. Biol. Chem. 277, 9512-9519.
  • Page M. J., Di Cera E., 2008. Serine peptidases: classification, structure and function. Cell Mol. Life Sci. 65, 1220-1236.
  • Pearson W. R., Lipman D. J., 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448.
  • Plaut A. G., Qiu J., St Geme J. W., 2000. Human lactoferrin proteolytic activity: analysis of the cleaved region in the IgA protease of Haemophilus influenzae. Vaccine 19 (Suppl 1), S148-S152.
  • Puente X. S., Sanchez L. M., Overall C. M., Lopez-Otin C., 2003. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544-558.
  • Puente X. S., Sanchez L. M., Gutierrez-Fernandez A., Velasco G., Lopez-Otin C., 2005. A genomic view of the complexity of mammalian proteolytic systems. Biochem. Soc Trans. 33, 331-334.
  • Rawlings N. D., Barrett A. J., 1993. Evolutionary families of peptidases. Biochem. J. 290, 205-218.
  • Rawlings N. D., Barrett A. J., Bateman A., 2012. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343-D350.
  • Reid B. G., Fenton W. A., Horwich A. L., Weber-Ban E. U., 2001. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc. Natl. Acad. Sci. USA 98, 3768-3772.
  • Reuven N. B., Arad G., Maor-Shoshani A., Livneh Z., 1999. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274, 31763-31766.
  • Rhazi N., Charlier P., Dehareng D., Engher D., Vermeire M., Frere J. M., Nguyen-Disteche M., Fonze E., 2003. Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein probed by site-directed mutagenesis and structural analysis. Biochemistry 42, 2895-2906.
  • Richter R., Hejazi M., Kraft R., Ziegler K., Lockau W., 1999. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur. J. Biochem. 263, 163-169.
  • Rotanova T. V., Botos I., Melnikov E. E., Rasulova F., Gustchina A., Maurizi M. R., Wlodawer A., 2006. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci. 15, 1815-1828.
  • Sauvage E., Herman R., Petrella S., Duez C., Bouillenne F., Frere J. M., Charlier P., 2005. Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins. J. Biol. Chem. 280, 31249-31256.
  • Shariat-Madar Z., Mahdi F., Schmaier A. H., 2004. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 103, 4554-4561.
  • Shariat-Madar Z., Rahimy E., Mahdi F., Schmaier A. H., 2005. Overexpression of prolylcarboxypeptidase enhances plasma prekallikrein activation on Chinese hamster ovary cells. Am. J. Physiol. Heart Circ. Physiol. 289, H2697-H2703.
  • Smitha Rao C. V., Anne J., 2011. Bacterial type I signal peptidases as antibiotic targets. Future. Microbiol. 6, 1279-1296.
  • Sonawane V. C., 2006. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 26, 95-120.
  • Valenti P., Berlutti F., Conte M. P., Longhi C., Seganti L., 2004. Lactoferrin functions: current status and perspectives. J. Clin. Gastroenterol. 38, S127-S129.
  • Wang Y., Zhang Y., Ha Y., 2006. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179-180.
  • Wang Y. X., Ulu A., Zhang L. N., Hammock B., 2010. Soluble epoxide hydrolase in atherosclerosis. Curr. Atheroscler. Rep. 12, 174-183.
  • Webb E. C., 1993. Enzyme nomenclature: a personal retrospective. FASEB J. 7, 1192-1194.
  • Wlodawer A., Li M., Gustchina A., Oyama H., Dunn B. M., Oda K., 2003. Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidases. Acta Biochim. Pol. 50, 81-102.
  • Wright C. S., Alden R. A., Kraut J., 1969. Structure of subtilisin BPN' at 2.5 angstrom resolution. Nature 221, 235-242.
  • Xue Y., Chowdhury S., Liu X., Akiyama Y., Ellman J., Ha Y., 2012. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 51, 3723-3731.
  • Yin J., Deng Z., Zhao G., Huang X., 2011. The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis. J. Biol. Chem. 286, 24476-24486.
  • Yu A. Y., Houry W. A., 2007. ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett. 581, 3749-3757.
  • Zhang J., Ye F., Lan L., Jiang H., Luo C., Yang C. G., 2011. Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics. J. Biol. Chem. 286, 37590-37601.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.