Preferences help
enabled [disable] Abstract
Number of results
2015 | 64 | 2 | 305-317
Article title

Zastosowanie tkanki kalusa w biotechnologii drzew leśnych: badania in vitro

Title variants
The use of callus tissue in forest tree biotechnology: studies in vitro
Languages of publication
Kalus występujący w warunkach ex vitro jako tkanka przyranna jest obiektem badaniach biotechnologicznych in vitro takich jak: uzyskiwanie metabolitów wtórnych, analiza patogeniczności na poziomie embrionalnym, krioprezerwacja materiału roślinnego, uzyskiwanie roślin transformowanych i analiza wpływu metali ciężkich na rośliny. Kalus otrzymuje się metodą somatycznej embriogenezy i organogenezy in vitro jako jej pośredni efekt. Istnieje duże zainteresowanie otrzymaniem kalusa drzew leśnych. Kalus roślin drzewiastych zaindukowany w warunkach in vitro pod wpływem elicitorów w postaci grzybów produkuje metabolity wtórne: monoterpeny i izoproteidy z Betula sp. oraz glikozydy fenolowe u rodziny Salicaceae. Substancje te znalazły zastosowanie nie tylko w przemyśle farmaceutycznym i kosmetycznym, ale również mają silne działanie odstraszające zwierzęta roślinożerne. Kultury dualne in vitro wykazały, że kalus nieembriogenny poddany wpływowi czynników stresowych (grzyb patogeniczny) wytwarza białka odpornościowe o niskiej masie cząsteczkowej. Daje to podstawę do oceny stopnia patogeniczności grzyba na poziomie embrionalnym. Krioprezerwacja kalusa embriogennego znajduje szerokie zastosowanie w rozszerzaniu banku genów. Badano także wpływ metali ciężkich na kalus.
Callus, occurring ex vitro as wound tissue, is a subject of extensive biotechnological in vitro research, including: obtainment of secondary metabolites, pathogenicity studies at embryonic level, cryopreservation of plant material, obtainment of transformed plants and influence of heavy metals on plants. Callus can be obtained, among others, as an indirect effect of somatic embryogenesis and organogenesis in vitro. Hence, there is considerable interest in application of this method in forest trees and in callus obtained as a result thereof. Callus of woody plants, induced in vitro under the effect of elicitors in the form of fungi, produces secondary metabolites, such as: monoterpenes and isoprenoids in Betula sp. and phenolic glycosides in the family Salicaceae. These secondary metabolites have been used not only in the pharmaceutical and cosmetic industries, but also as strong repelling agents against herbivores. On the other hand, studies in dual in vitro cultures have shown that non-embryogenic callus of e.g. Pinus sylvestris subjected to a stress factor such as pathogenic fungus, produces in response low molecular weight proteins classified as PR-type (pathogenesis related) immune proteins. These observations give the basis for the assessment of pathogenicity and the level of threat posed by the fungus at the cellular level. Also, cryopreservation of embryogenic callus is widely used, among others, in gene bank reservoirs of valuable plant genotypes. Biotechnological studies involving callus of different forest tree species complement and support the development of disciplines such as physiology, phytopathology or plant breeding and selection.
Physical description
  • Zakład Fitopatologii Leśnej, Mykologii i Fizjologii Drzew, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Al. 29-Listopada 46, 31-425 Kraków, Polska
  • Agrawal V., Sharma K., 2006. Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica. Biol. Plant. 50, 307-310.
  • Becwar M. R., Nagmani R., Wann S. R., 1990. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. Forest Res. 20, 810-817.
  • Becwar M. R., Noland T. J., Wyckoff J. L., 1989. Maturation, germination and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell. Devel. Biol. Plant 25, 575-580.
  • Berjak P., Pammenter N. W., 2013. Implications of the lack of desiccation tolerance in recalcitrant seeds. Front. Plant Sci. 4, 1-9.
  • Bołonkowska O., Pietrosiuk A., Sykłowska-Baranek K., 2011. Roślinne związki barwne i ich właściwości biologiczne oraz możliwości wytwarzania w kulturach in vitro. Biuletyn Wydziału Farmaceutycznego Warszawskiego Uniwersytetu Medycznego 1, 1-27.
  • Bornman C. H., Jansson E., 1981. Regeneration of plants from conifer leaf, with special reference to Picea abies and Pinus sylvestris. Colloque International sur la Culture In Vitro des Essances Forestieres. Fontaineblau, AFOCEL, 41-53.
  • Bourgaud F., Gravot A., Milesi S., Gontier E., 2001. Production of plant secondary metabolites: a historical perspective. Plant Sci. 161, 839-851.
  • Chalupa V., 1995. Somatic embryogenesis in birch (Betula pendula Roth.). [W:] Somatic Embryogenesis in Woody Plants. Jain S. M., Gupta P. K., Newton R. J. (red.). Kluwer Academic Publishers, Dordrecht, 2, 207-220.
  • Cline S. D., Coscia C. J., 1988. Stimulation of sanguinarine production by combined fungal elicitation and hormonal deprivation in cell suspension cultures of Papaver bracteatum. Plant Physiol. 86, 161-165.
  • Cornu D., Geoffrion C., 1990. Aspects de l'embryogenese somatique chez le meleze. Bulletin de la Société Botanique de France, 137, 25-34.
  • Corredoira E., Balleste A., Vieitez A. M., 2003. Proliferation, maturation and germination of Castanea sativa Mill. Somatic embryos orginated from leaf explants. Ann. Bot. 92, 129-136.
  • Cusidó R. M., Palazón J., Navia-Osorio A., Mallol A., Bonfill M., Morales C., Piñol M. T., 1999. Production of Taxol and baccatin III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Scie. 146, 101-107.
  • Cyr D. R., Klimaszewska K., 2002. Conifer somatic embryogenesis: II Applications. Dendrobiology 48, 41-49.
  • Ďurkovič J., Mišalová A., 2008. Micropropagation of temperate noble hardwoods: An overview. Funct. Plant Sc. Biotechnol. 2, 1-9.
  • Goff S. A., Ricke D., Lang T.-H. i współaut., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica.). Science 296, 92-100.
  • Gruszczyńska A., Rakoczy-Trojanowska M., 2007. Charakterystyka genów ulegających ekspresji podczas somatycznej embriogenezy u roślin. Biotechnologia 1, 96-106.
  • Gupta P. K., Durzan D. J., 1985. Shoot multiplication from mature trees of Douglas - fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 4, 177-179.
  • Gupta P. K., Durzan D. J., 1986. Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cell. Devel. Biol. Plant 22, 685-688.
  • Gupta P. K., Durzan D. J. 1987. Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5, 147-151.
  • Hakman I., Fowke L. C, Von Arnold S., Eriksson T., 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38, 53-59.
  • Hargreaves C., Menzies M., 2007. Organogenesis and cryopreservation of juvenile radiata pine. [W:] Protocols for Micropropagation of Woody Trees and Fruits. Jain S. M., Häggman H. (red.). Springer-Verlag 6, 51-66.
  • Hazubska-Przybył T., Chmielarz P., Michalak M., Bojarczuk K., 2010. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss. Org. Cult. 102, 35-44.
  • Hazubska-Przybył T., Chmielarz P., Michalak M., Dering M., Bojarczuk K., 2012. Vitrification metod of ambryogenic tissues of spruce trees (Picea spp.). Biotechnologia 93, 242.
  • Hazubska-Przybył T., Chmielarz P., Michalak M., Dering M., Bojarczuk K., 2013a. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowthdehydration method. Plant Cell Tiss. Org. Cult. 113, 303-313.
  • Hazubska-Przybył T., Ratajczak E., Kalemba E. M., Bojarczuk K., 2013b. Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species. Dendrobiology 69, 77-86.
  • Hendry S. J., Boddy L., Lonsdale D. 1993. Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytol. 123, 421-428.
  • Klimaszewska K., Park Y.-S., Overton C., Maceacheron I., Bonga J. M., 2001. Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell. Devel. Biol. Plant 37, 392-399.
  • Klimaszewska K., Overton C., Stewart D., Rutledge R. G., 2010. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233, 635-647.
  • Komaraiah P., Amrutha R.N., Kavi Kishor P.B., Rhamakrishna S., V. 2002. Elicitor enhanced production of plumbagin in suspension cultures of Plumbagino rosea L. Enzyme Microb. Technol. 31, 634-639.
  • Kowalski T., Kehr R. D. 1992. Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44, 137-168.
  • Kraj W., Dolnicki A., Nawrot-Chorabik K., 1999. Sterilisation of the explants from beech (Fagus sylvatica L.) for the in vitro cultures. Biologia (Bratislava). S. Botany 54 (Suppl. 7), 33.
  • Lelu-Walter M. A., Bernier-Cardou M., Klimaszewska K., 2008. Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss. Org. Cult. 92, 31-45.
  • Litvay J. D., Verma, D. C., Johnson M. A., 1985. Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Rep. 4, 325-328.
  • Lloyd G., McCown B., 1981. Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Propag. Soc. 30, 421-427.
  • Malá J., Cvikrová M., Chalupa V., 2007. Micropropagation of mature trees of Ulmus glabra, Ulmus minor and Ulmus laevis. [W:] Protocols for Micropropagation of Woody Trees and Fruits. Jain S. M., Häggman H. (red.). Springer-Verlag 22, 237-248.
  • Mulabagal V., Tsay H. S., 2004. Plant cell cultures an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Applied Sci. Eng. 2, 29-48.
  • Mihaljević S., Jelaska S. 2005. Omorica spruce (Picea omorica). [W:] Protocol for Somatic Embryogenesis in Woody Plants. Jain S. M., Gupta P. (red.). Forestry Sciences. Springer-Verlag 77, 35-46.
  • Misson J.-P., Druart P., Panis B., Watillon B., 2006. Contribution to the study of the maintenance of somatic embryos of Abies nardmaniana Lk: culture media and cryopreservation method. Propag. Ornament. Plants 6, 17-23.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-494.
  • Naujoks G., 2007. Micropropagation of Salix caprea L. [W:] Protocols for Micropropagation of Woody Trees and Fruits. Jain S. M., Häggman H. (red.). Springer-Verlag 20, 213-220.
  • Nawrot-Chorabik K., 2007. Induction and development of Grand Fir (Abies grandis Lindl.) callus in tissue cultures. Elect. J. Polish Agricult. Univ. 10, 1-11.
  • Nawrot-Chorabik K., 2008. Embryogenic callus induction and differentiation in silver fir (Abies alba Mill.) tissue culture. Dendrobiology 59, 31-40.
  • Nawrot-Chorabik K., 2009. Somaclonal variation in embryogenic cultures of silver fir (Abies alba Mill.). Plant Biosyst. 143, 377-385.
  • Nawrot-Chorabik K., 2012. Somatic embryogenesis in forest plants. [W:] Embryogenesis Ken-Ichi S. (red.). InTech open science Publisher, Rijeka, 20, 423-446.
  • Nawrot-Chorabik K., 2013. Możliwości wykorzystania kultur dualnych w praktyce leśnej. Sylwan 157, 54-62.
  • Nawrot-Chorabik K., 2014. Interactions between embryogenic callus of Abies alba and Heterobasidion spp. in dual cultures. Biol. Plant. 58, 363-369.
  • Nawrot-Chorabik K., 2015a. Plantlet regeneration through somatic embryogenesis Abies nordmanniana (Steven) Spach (Normanninir). J. For. Res. (w druku).
  • Nawrot-Chorabik K., 2015b. The effect of explant origin, media and growth regulators on the initiation and proliferation of embryogenic callus of Pinus sylvestris L. in somatic embryogenesis. Phyton Horn (in press).
  • Nawrot-Chorabik K., Jankowiak R., 1999. Wstępne badania nad dezynfekcją eksplantatów jodły olbrzymiej (Abies grandis Lindl.) wykorzystywanych w kulturach in vitro do mikrorozmnażania jodły. Zeszyty Naukowe AR z. 28, 39-50.
  • Nawrot-Chorabik K., Sitko K., 2014. The effect of abscicsic acid and dimethyl sulfoxide and different temperatures on the cryopreservation process of Abies nordmanniana (Steven) Spach embryogenic callus. Phyton Horn. (Austria) 54, 275-284.
  • Nawrot-Chorabik K., Jankowiak R., Grad B., 2011. Growth of two blue-stain fungi associated with Tetropium beetles in the presence of callus cultures of Picea abies. Dendrobiology 66, 41-47.
  • Nhut D. T., Hien N. T. T., Don, N.T., Khiem D. V., 2007. In vitro shoot development of Taxus wallichiana Zucc., a valuable medicinal plant. [W:] Protocols for Micropropagation of Woody Trees and Fruits. Jain S.M., Häggman H. (red.). Springer-Verlag 10, 107-116.
  • Palo R. T., 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J. Chem. Ecol. 10, 499-520.
  • Park Y. S., 2001. Implementation of somatic embryogenesis in clonal forestry: technical requirements and deployment strategies. Int.Conference Wood, Breeding, Biotechnology and Industrial expectations, Bordeaux, France, 106.
  • Rao P. S., 1965. In vitro induction of embryonic proliferation in Santalum album L. Phytomorphology 15, 175-179.
  • Salaj T., Salaj J. 2003/4. Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biol. Plant. 47, 7-11.
  • Salajova T., Salaj J., Jasik J., Kormutak A., 1995. Somatic embryogenesis in Pinus nigra Arn. [W:] Somatic Embryogenesis in Woody Plants. Jain S. M., Gupta P. K., Newton R. J. (red.). Kluwer Academic Publishers, Dordrecht, 207-220.
  • Schenk R. U., Hildebrandt A., C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199-204.
  • Schulz B., Boyle Ch., Draeger S., Römmert A.-K., Krohn K., 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106, 996-1004.
  • Sparg S. G., Light M. E., Van Staden J., 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219-243.
  • Stefaniak B., 2004. Roślinne komórki in vitro. [W:] Komórki roślinne w warunkach stresu. Tom II Komórki in vitro. Woźny A., Przybył K. (red.) Wydawnictwo Naukowe UAM, Poznań 2004.
  • Steward F. C., 1958. Growth and development of cultivated cells. III. Interpretations of the growth from free cell of carrot. Am. J. Bot. 45, 709-713.
  • Szczygieł K., 2005. Somatyczna embriogeneza - alternatywny sposób uzyskiwania wyslekcjonowanego materiału sadzeniowego gatunków drzew iglastych. Leśne Prace Badawcze 3, 71-92.
  • Szczygieł K., Wojda T., 2008. Mikrorozmnażanie czereśni ptasiej (Prunus avium L.) i jej plantacyjna uprawa we Włoszech. Leśne Prace Badawcze 69, 72-75.
  • Tan R. X., Zou W. X., 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18, 448-459.
  • Tkacz J. S., 2000. Polyketide and peptide products of endophytic fungi: variations on two biosynthetic themes of secondarymetabolism. [W:] Microbial Endophytes. Bacon C. W., White J. F. (red.). Marcel Dekker, New York, 263-294.
  • Toribo M., Celestino C., Molinas M., 2005. Cork oak, Quercus suber L. [W:] Protocol for somatic embryogenesis in woody plants. Jain S. M., Gupta P. (red.). Forestry Sciences Springer-Verlag 77, 445-458.
  • Trigiano R. N., Gray D. J., 2011. Plant Development and Biotechnology. Section IV Propagation and development concepts. CRC Press.
  • Valledor L., Rodríguez R., Sánchez P., Fraga M. F., Berdasco M., Hasbún R., Rodríguez J. L., Pacheco J. C., García I., Uribe M. M., Ríos D., Sánchez M., Materán M. E., Walter C., Cañal M. J. 2007. Propagation of selected Pinus genotypes regardless of age. [W:] Protocols for Micropropagation of Woody Trees and Fruits. Jain S. M., Häggman H. (red.). Springer-Verlag 13, 137-146
  • Von Arnold S., Clapham D., 2008. Spruce embryogenesis. [W:] Methods in molecular biology, Plant embryogenesis. Suárez M. F., Bozhkov P. V. (red.). Humana Press, Inc. Totowa, NJ, United States. 427, 31-45.
  • Walters C., Find J. I., Grace L. J., 2005. Somatic embryogenesis and genetic transformation in Pinus radiata. [W:] Protocol for somatic embryogenesis in woody plants. Jain S. M., Gupta P. (red.). Forestry Sciences. Springer-Verlag 77, 11-24.
  • Wang Ch., Wu J., Mei X., 2001. Enhancement of Taxol production and execration in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl. Microbiol. Biotechnol. 55, 404-410.
  • Woźny A., Przybył, K., 2004. Komórki roślinne w warunkach stresu. Tom II Komórki in vitro. Adam Mickiewicz University, 72-91.
  • Yang X., Zhang X., 2011. Developmental and molecular aspects of non zygotic (somatic) embryogenesis. [W:] Plant tissue culture, development, and biotechnology. Trigiano R. N., Gray D. J. (red.). CRC Press, 307-326.
  • Zenkteler M., 1984. Hodowla komórek i tkanek roślinnych. PWN.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.