Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 2 | 261-270

Article title

Kwas hialuronowy w macierzy zewnątrzkomórkowej mózgu

Authors

Content

Title variants

EN
Hyaluronic acid in the extracellular matrix of the brain

Languages of publication

PL EN

Abstracts

PL
Kwas hialuronowy jest liniowym polisacharydem o różnej długości, składającym się z wielokrotnie powtórzonych dimerów kwasu glukuronowego i N-acetyloglukozaminy, wchodzącym w skład macierzy zewnątrzkomórkowej większości tkanek i organów, w tym również mózgu. Jest syntetyzowany w zewnętrznej błonie komórkowej przez trzy syntazy, HAS1-3 i degradowany częściowo w błonie zewnątrzkomórkowej przez hialuronidazę 2 (HYAL2), internalizowany na drodze endocytozy i kierowany do lizosomów, gdzie ulega dalszej degradacji przez HYAL1 i egzoglikozydazy. Pomimo prostej budowy chemicznej, HA pełni w mózgu wiele funkcji, zależnie od wielkości cząsteczki. Wielkocząsteczkowy HA jest obecny w dużych ilościach w mózgu embrionalnym, sprzyjając migracji neuronów, jest też obecny w niszach neurogennych w mózgu dorosłym, gdzie pełni tę samą funkcję. Wchodzi również w skład sieci perineuronalnych, struktur okrywających niektóre neurony i ograniczających plastyczność synaptyczną. Zarówno wielkocząsteczkowy jak i niskocząsteczkowy HA ma zdolność wiązania do receptorów zewnątrzkomórkowych i aktywowania szlaków przekaźnictwa wewnątrzkomórkowego, regulując wzrost aksonów i dendrytów, migrację astrocytów, procesy zapalne i naprawcze w uszkodzonym mózgu. Ulega ekspresji w glejakach, gdzie promuje rozwój guza i przerzuty. Funkcje kwasu hialuronowego w mózgu, chociaż intensywnie badane, wciąż nie są w pełni znane. Pogłębienie wiedzy na temat mechanizmów leżących u podstaw procesów regulowanych przez HA niesie nadzieję na stworzenie narzędzi dla nowych terapii do walki z efektami uszkodzenia mózgu czy z nowotworami.
EN
Hyaluronic acid (HA) is a non-branched polysaccharide of various size, with repeats of a disaccharide unit consisting of D-glucuronic acid and N-acetyl-D glucosamine. It is synthesized by three synthases, HAS1-3, at the plasma membrane, and degraded partially at the same localization by hyaluronidase Hyal-2, endocytosed and directed to lysosomes, where final degradation by Hyal-1 and exoglycosidases takes place. Despite its chemical simplicity, hyaluronic acid exhibits an array of functions in the brain, depending on molecular size of the molecule. High molecular weight HA is abundantly expressed in the embryonic brain extracellular matrix (ECM) and also in adults, where, on the surface of selected neurons, together with other constituents, it forms perineuronal nets, the structures that impede synaptic plasticity. In developing brain it promotes neuronal migration and in adult brain it is abundant in neurogenic niches, where it plays the same role. Both high and low molecular weight HA interacts with various proteins and proteoglycans to organize the ECM, binds with cell surface receptors and activates signaling pathways which regulate axonal and dendritic growth, as well as regulates astrocyte migration, inflammation and healing in the injured brain. It is up regulated in gliomas and involved in tumor progression and metastasis. Although extensively studied in other tissues, the function and the molecular basis of action of hyaluronic acid in the brain is far from understood. A deeper knowledge of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for intervening therapies in case of brain injury or cancer.

Keywords

Journal

Year

Volume

64

Issue

2

Pages

261-270

Physical description

Dates

published
2015

Contributors

  • Instytut Biologii Doświadczalnej PAN im. M. Nenckiego, Pasteura 3, 02-093 Warszawa, Polska

References

  • Arranz A. M., Perkins K. L., Irie F., Lewis D. P., Hrabe J., Xiao F., Itano N., Kimata K., Hrabetova S., Yamaguchi Y., 2014. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164-6176.
  • Banerji S., Ni J., Wang S.-X., Clasper S., Su J., Tammi R., Jones M.,. Jackson D. G., 1999. LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan. J. Cell Biol. 144, 789-801.
  • Bourguignon L. Y., Singleton P. A., Diedrich F., Stern R., Gilad E., 2004. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 279, 26991-7007.
  • Bourguignon L. Y., Gilad E, Peyrollier K., Brightman A., Swanson R. A., 2007. Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J. Neurochem. 101, 1002-1017.
  • Cargill.R., Kohama S. G., Struve J., Su W., Banine F., Witkowski E., Back S. A., Sherman L. S., 2012. Astrocytes in aged nonhuman primate brain gray matter synthesize excess hyaluronan. Neurobiol. Aging 33, 830.e13-830.e 24.
  • Carulli D., Rhodes K. E., Brown D. J., Bonnert T. P., Pollack S. J., Oliver K., Strata P., Fawcett J. W., 2006. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494, 559-577.
  • Chaitanya G. V., Omura S., Sato F., Martinez N. E., Minagar A., Ramanathan M., Guttman B. W., Zivadinov R., Tsunoda I., Alexander J. S., 2013. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature. J Neuroinflammat. 10, 125.
  • Costa C., Tortosa R., Domènech A., Vidal E., Pumarola M., Bassols A., 2007. Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. J. Chem. Neuroanat. 33, 111-123.
  • Csoka A. B., Stern R., 2013. Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology 23, 398-411.
  • Dicker K. T., Gurski L. A., Pradhan-Bhatt S., Witt R. L., Farach-Carson M. C., Jia X., 2014 Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 10, 1558-1570.
  • Dzwonek J., Wilczynski G. M., 2015. CD44: molecular interactions, signaling and functions in the nervous system. Front. Cell. Neurosci. 9, 175.
  • Falkowski M., Schledzewski K., Hansen B., Goerdt S., 2003. Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochem. Cell Biol. 120, 361-369.
  • Fawcett J. W., 2015. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 218, 213-226.
  • Frischknecht R., Gundelfinger E. D., 2012. The brain's extracellular matrix and its role in synaptic plasticity. Adv. Exp. Med. Biol. 970, 153-171.
  • Galtrey C. M., Kwok J. C., Carulli D., Rhodes K. E., Fawcett J. W., 2008. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 27, 1373-1390.
  • Hemming R., Martin D. C., Slominski E., Nagy J. I., Halayko A. J., Pind S., Triggs-Raine B., 2008. Mouse Hyal3 encodes a 45- to 56-kDa glycoprotein whose overexpression increases hyaluronidase 1 activity in cultured cells. Glycobiology 18, 280-289.
  • Iozzo R. V., Murdoch A. D., 1996. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598-614.
  • Jackson D. G., 2009. Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol. Rev. 230, 216-231.
  • Jedrzejas M. J., Stern R., 2005. Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 61, 227-238.
  • Junker N., Latini S., Petersen L. N., Kristjansen P. E., 2003 Expression and regulation patterns of hyaluronidases in small cell lung cancer and glioma lines. Oncol. Rep. 10, 609-616.
  • Kaaijk P., Pals S. T., Morsink F., Bosch D. A., Troost D., 1997. Differential expression of CD44 splice variants in the normal human central nervous system. J. Neuroimmunol. 73, 70-76.
  • Khaing Z. Z., Milman B. D., Vanscoy J. E., Seidlits S. K., Grill R. J., Schmidt C. E., 2011. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J. Neural. Eng. 8, 046033.
  • Kwok J. C., Carulli D., Fawcett J. W., 2010. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem. 114, 1447-1459.
  • Kyosseva S. V., Harris E. N., Weigel P. H., 2008. The hyaluronan receptor for endocytosis mediates hyaluronan-dependent signal transduction via extracellular signal-regulated Kinases. J. Biol. Chem. 283, 15047-15055.
  • Lepperdinger G., Strobl B., Kreil G., 1998. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J. Biol. Chem. 273, 22466-22470.
  • Lepperdinger G., Müllegger J., Kreil G., 2001. Hyal2--less active, but more versatile? Matrix Biol. 20, 509-514.
  • Lesley J., English N., Perschl A., Gregoroff J., Hyman R., 1995. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J. Exp. Med. 182, 431-437.
  • Lindwall C., Olsson M., Osman A. M., Kuhn H. G., Curtis M. A., 2013. Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex. Brain Res. 1503, 62-77.
  • Lynn B. D., Li X., Cattini P. A., Turley E. A., Nagy J. I., 2001. Identification of sequence, protein isoforms, and distribution of the hyaluronan-binding protein RHAMM in adult and developing rat brain. J. Comp. Neurol. 439, 315-330.
  • Margolis R. U., Margolis R. K., Chang L. B., Preti C., 1975. Glycosaminoglycans of brain during development. Biochemistry 14, 85-88.
  • Maxwell C. A., McCarthy J., Turley E., 2008. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925-932.
  • McRae P. A., Baranov E., Rogers S. L., Porter B. E., 2012. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur. J. Neurosci. 36, 3471-3482.
  • Nagy J. I., Hacking J., Frankenstein U. N., Turley E. A., 1995. Requirement of the hyaluronan receptor RHAMM in neurite extension and motility as demonstrated in primary neurons and neuronal cell lines. J. Neurosci. 15, 241-252.
  • Pandey M. S., Weigel P. H., 2014. A hyaluronan receptor for endocytosis (HARE) link domain N-glycan is required for extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) signaling in response to the uptake of hyaluronan but not heparin, dermatan sulfate, or acetylated low density lipoprotein (LDL). J. Biol. Chem. 289, 21807-21817.
  • Pizzorusso T., Medini P., Landi S., Baldini S., Berardi N., Maffei L., 2006. Structural and functional recovery from early monocular deprivation in adult rats. Proc. Natl. Acad. Sci. USA 103, 8517-8522.
  • Preston M., Sherman L. S., 2011. Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front. Biosci. (Schol Ed.) 3, 1165-1179.
  • Scott J. E., Heatley F., 2002. Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules 3, 547-553.
  • Siiskonen H., Oikari S., Pasonen-Seppänen S., Rilla K., 2015. Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front. Immunol. 6, 43.
  • Skupien A., Konopka A., Trzaskoma P., Labus J., Gorlewicz A., Swiech L., Babraj M., Dolezyczek H., Figiel I., Ponimaskin E., Wlodarczyk J., Jaworski J., Wilczynski G. M., Dzwonek J., 2014. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. J. Cell Sci. 127, 5038-5051.
  • Stern R., 2004. Hyaluronan catabolism: a new metabolic pathway. Eur. J. Cell Biol. 83, 317-325.
  • Stern R., Asari A. A., Sugahara K. N., 2006. Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 85, 699-715.
  • Tachi Y., Okuda T., Kawahara N., Kato N., Ishigaki Y., Matsumoto T., 2015. Expression of hyaluronidase-4 in a rat spinal cord hemisection model. Asian Spine J. 9, 7-13.
  • Tammi R. H., Passi A. G., Rilla K., Karousou E., Vigetti D., Makkonen K., Tammi M. I., 2011. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 278, 1419-1428.
  • Turley E. A., Austen L., Moore D., Hoare K., 1993. Ras-transformed cells express both CD44 and RHAMM hyaluronan receptors: only RHAMM is essential for hyaluronan-promoted locomotion. Exp. Cell Res. 207, 2772-2782.
  • Turley E., Hossain M. Z., Sorokan T., Jordan L. M., Nagy J. I., 1994. Astrocyte and microglial motility in vitro is functionally dependent on the hyaluronan receptor RHAMM. Glia 12, 68-80.
  • Vigetti D., Karousou E., Viola M., Deleonibus S., De Luca G., Passi A., 2014. Hyaluronan: biosynthesis and signaling. Biochim. Biophys. Acta 1840, 2452-2459.
  • Weigel P. H., DeAngelis P. L., 2007. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J. Biol. Chem. 282, 36777-36781.
  • Yaffe N. R., Almond A., Blanch E. W., 2010. A new route to carbohydrate secondary and tertiary structure using Raman spectroscopy and Raman optical activity. J. Am. Chem. Soc. 132, 10654-10655.
  • Xing G., Ren M., Verma A., 2014. Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled-cortical impact injury in rat brain: A pilot study. Front. Neurol. 5, 173.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p261kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.