PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 64 | 1 | 113-127
Article title

Kwercetyna, ważny flawonoid w życiu roślin

Content
Title variants
Languages of publication
PL EN
Abstracts
PL
Kwercetyna (Q) należy dla flawonoidów i została zakwalifikowana do klasy flawonoli, jest związkiem szeroko rozpowszechnionym w świecie roślin. W roślinach rzadko występuje jako aglikon, w większości tworzy połączenia z różnymi związkami, w tym z cukrami. Flawonole są prawdopodobnie najważniejszą i najstarszą grupą flawonoidów. Kwercetyna występują w różnych tkankach, komórkach i kompartmentach komórkowych, co jest związane z pełnioną przez nie funkcją, uczestniczy w interakcji pomiędzy rośliną a środowiskiem. Pochodne hydrofilowe flawonoli gromadzą się głównie w strukturach komórkowych (chloroplast, cytoplazma, wakuole, jądro). Pochodne lipofilowe występują głównie w wydzielniczych i nie wydzielniczych włoskach (trichomach) zlokalizowanych na powierzchni liści, kwiatów i owoców. W efekcie gromadzą się w miejscach, w których mogą skutecznie niwelować uszkodzenia oksydacyjne, w tym wywołane nadmiernym oświetleniem, czyli w miejscach powstawania ROS (reaktywnych form tlenu). Kwercetyna i jej pochodne chronią roślinę przed stresem oksydacyjnym, ale także poprzez zmiany statusu redoks mają wpływ na kontrolę wzrostu i różnicowania komórek. Związki te wykazują wiele aktywności fizjologicznych m. in. regulując stężenie IAA, na różnych drogach oraz wpływają na dojrzewanie pyłku. Zatem, kwercetyna jest ważna dla rozwoju poszczególnych organów i całej rośliny.
EN
Quercetin (Q) belongs to flavonoids, and it has been classified as a flavonol. It is widely distributed in the plant kingdom. In plants, Q rarely occurs as an aglycone, in most cases it forms combinations with various compounds, including sugars. Flavonols are probably the most important and oldest group of flavonoids. Q is found in various tissues, cells and cellular compartments, what is associated with their functions, it also participates in the interactions between plants and environment. Hydrophilic derivatives of flavonols are accumulated predominantly in cellular structures (chloroplast, cytoplasm, vacuole, nucleus). Lipophilic derivatives occur mainly in trichomes located on the surface of leaves, flowers and fruits. They are accumulated in the areas where they can effectively eliminate oxidative damage caused by excessive light, thus they are located in the areas where ROS (reactive oxygen species) are formed. Q and its derivatives protect plants against oxidative stress but also, changing redox status, they can control cell growth and differentiation. These compounds have many physiological activities, i.a. by regulation of IAA concentration in various ways they influence pollen maturation. Thus, quercetin is important for the development of individual organs and the whole plant.
Keywords
Journal
Year
Volume
64
Issue
1
Pages
113-127
Physical description
Dates
published
2015
Contributors
  • Katedra Ekofizjologii i Rozwoju Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Katedra Ekofizjologii i Rozwoju Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
References
  • Agati G., Azzarello E., Pollastri S., Tattini M., 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 196, 67-76.
  • Agati G., Brunetti C., Di Ferdinando, Ferrini F., Pollastri S., Tattini M., 2013. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 72, 35-45.
  • Aherne S. H., O'brien N. M., 2002. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18, 75-81.
  • Akan Z., Garip A. I., 2011. Protective role of quercetin: antioxidants may protect cancer cells from apoptosis and enhance cell durability. Webmed Central Apoptosis 2, WMC001504.
  • Bieza K., Lois R., 2001 . An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126, 1105 -1115.
  • Cheynier V., Comte G., Davies K. M., Lattanzio V., Martens S., 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72, 1-20.
  • Cook N. C., Samman S., 1996. Flavonoids - chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem, 7, 66-76.
  • Crozier A., Jaganathb I. B., Clifford M. N., 2009. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001-1043.
  • Cruz T., Galvez J., Ocete M. A., Crespo M. E. Sanchez De Madina L. H. F., Zarzuelo A., 1998. Oral administration of rutoside can ameliorate inflammatory bowel disease in rats. Life Sci. 62, 687-695.
  • Denarie J., Debelle F., Rosenberg C., 1992. Signalling and host range variation in nodulation. Annu. Rev. Microbiol. 46, 497-531.
  • Di Ferdinando M, Brunetti C., Agati G., Tattini M., 2012. Flavonoids as antioxidants in plants under abiotic stresses. [W:] Flavonoids as Antioxidants in Plants Under Abiotic Stresses. Ahmad P., Prasad M. N. V. (red.). Springer New York, 159-179.
  • Dixon R. A., Pasinetti G. M., 2010. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol. 154, 453-457.
  • Erlejman A. G., Verstralten S. V., Fraga C. G., Oteiza P. J., 2004. The interactions of flavonoids with membrane: potential determinates of flavonoid antioxidant effects. Free Radic. Res. 38, 1311-1320.
  • Faller A. L. K., Fialho E., 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Intern. 42, 210-215.
  • Formica J. V., Regelson W., 1995. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxic. 33, 1061-1080.
  • Gomez C., Conejro G., Torregrosa L., Cheynier V., Terrier N., Ageorges A., 2011. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J. 67, 960-970.
  • Harborne J. B., 1994. The Flavonoids: Advances in Research Since 1986. London, UK, Chapman & Hall.
  • Harborne J. B., 1997. Związki metabolizmu wtórnego jako atraktanty pokarmowe. [W:] Ekologia biochemiczna. Harborne J. B. (red.). PWN, Warszawa, 160-169.
  • Hectors K., Van Oevelen S., Guisez Y., Prinsen E., Janasen A. K., 2012. The phytochrome auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol. Plant. 145, 594-603.
  • Heim K. E., Tagliaferro A. R., Bobilya D. J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572-584.
  • Hernández I., Alegre L., Van Breusegem F., Munné-Bosch S., 2009. How relevant are flavonoids as antioxidant in plants? Trends Plant Sci. 14, 125-132.
  • Hirsch A. A., 1992. Developmental biology of legume nodulation. New Phytol. 122, 211-237.
  • Hisieh K., Huang A. H., 2007. Tapetosome in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to pollen surface. Plant Cell 19, 582-596.
  • Hungaria M., Joseph C. M., Philips A. D., 1991. Anthocyanidins and flavonols, major nod gene inducers from seeds of black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 7, 751-758.
  • Kidd P. S., Liugany M., Poschenrieder C., Gunse B., Barcelo J., 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 1339-1352.
  • Kuhn B. M., Geisler M., Bigler L., Ringli C., 2011. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol. 156, 585-595.
  • Lagrange H., Jay-Allemand C., Lapeyrie F., 2001. Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 149, 349-355.
  • Lyubimov V. Y., Nazarova G. N., Muzafarov E. N., 1994. Quercetin effect on ratio of carboxylase to oxygenase activity of Rubisco. Dokl. Akad. Bot. Sin. 44, 1432-1437.
  • Łbik-Nowak A., Godlewski M., Domańska A., Anioł P., Bilecka A., 2002. Plant-plant allelopathy. Preliminary investigations of the role of camp signaling pathway. Call. Moll. Biol. Lett. 7, 143.
  • Mahajan M., Yadaw S. K., 2013. Effect of quercitin and epicatechin on the transcript expression and activity of antioxidant enzymes in tobacco seedlings. Am. J. Biochem. Mol. Biol. 3, 81-90.
  • Małecka a., Tomaszewska B., 2005. Reaktywne formy tlenu w komórkach roślinnych i enzymatyczne systemy obronne. Post. Biol. Kom. 32, 311-325.
  • Małolepsza U., Urbanek H., 2000. Flawonoidy roślinne jako związki biochemicznie czynne. Wiad. Bot. 44, 27-37.
  • Markham K. R., Ryan K. C., Gould K. S., Richards G. K., 2000. Cell wall sited flavonoids in lisanthus flower petals. Phytochemistry 54, 681-687.
  • Mastrangelo S., Massimiliano T., Carratu M. R., Evandri M. G.,Bolle P., 2006. Quercetin reduces chromosome aberrations induced by atrazine in the Allium cepa test. Environ. Mol. Mutagen. 47, 254-259.
  • Materska M., 2008. Quercetin and its derivatives: Chemical structure and bioactivity - a review. Pol. J. Food Nutr. Sci. 58, 407-413.
  • Miller E., Malinowska K., Gałęcka E., Mrowicka M., Kędziora J., 2008. Rola flawonoidów jako przeciwutleniaczy w organizmie człowieka. Pol. Merk. Lek. 24, 556-560.
  • Mravec J., P. Skupa P., Bailly A., Hoyerova K., Bielach A., Petrasek J., Zhang J., Gayakova V., Stierhof Y. K., Dobrev P. I., Schwarzerova K., Rolcik J., Seifertova D., Luschnig C., Benkova E., Zazimalova E., Geisler M., Friml J., 2009. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136-1140.
  • Muzafarov E. N., Ruzieva R. K., Akulova E. A., Zaletskaya O. Y., 1980. Flavonol effect on the electron transport and photophosporylation in chloroplasts. Fizjol. Rast. 27, 677-684.
  • Olko A., Kujawska M., 2011. Podwójna rola H2O2 w odpowiedzi roślin na działanie warunków stresowych. Kosmos 60, 161-171.
  • Paszkiewicz M., Budzyńska A., Różalska B., Sadowska B., 2012. Immunomodulacyjna rola polifenoli roślinnych. Postepy Hig. Med. Dosw. 66, 637-646.
  • Patil B. S., Pike L. M, Yoo K. S., 1995. Variation in the quercetin content in different colored onions (Allium cepa L.). J. Amer. Soc. Hort. Sci. 120, 909-913.
  • Peer W. A., Murphy A. S., 2007. Flavonoids and auxin transport: modulators or regulators. Trends Plant Sci. 12, 556-563.
  • Peer W. A., Brown D. E., Tague B. W., Muday G. K., Taiz L., Murphy A. S., 2001. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 126, 536-548.
  • Pollastri S., Tattini M., 2011. Flavonols: old compound for old roles. Ann. Bot. 108, 1225-1233.
  • Rabinowicz P. D., Braun E. I., Wolfe A. D., Bowden B., Grotewold E., 1999. Maize R2R3 Myb genes: seqence analysis reveals amplification in the higher plants. Genetics 153, 427-444.
  • Rice-Evans C. A., Miller N. J., Paganga G., 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad. Biol. Med. 20, 933-956.
  • Roda A. L., Oldham N. J., Svatos A., Baldwin I. T., 2003. Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochemistry 62, 527-536.
  • Ross J. A., Kasum C. M., 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22,19-34.
  • Rusak G., Kraja M., Krsnik-Rasol M., Gutzeit H. O., 2007. Quercetin influences response in Nicotiana megalosiphon infected by satellite-associated cucumber mosaic virus. J. Plant Dis. Protect. 4, 145-150.
  • Stafford H. A., 1991. Flavonoid evolution: an enzymatic approach. Plant Physiol. 96, 680-685.
  • Saunders, J. A., Mcclure J. W., 1976. The distribution of flavonoids in chloroplasts of twenty five species of vascular plants. Phytochemistry 15, 809-810.
  • Shaidi F., Naczk M., 1995. Food phenolics : sources, chemistry, effects, application. Techn. Publish. Com. 1-4, 171-273.
  • Strack D., 1997. Phenolic metabolism. [W]: Plant Biochemistry. Dey P. M., Harborne J. B. (red.). Academic Press, 387-416.
  • Stolarzewicz I. A., Ciekot J., Fabiszewska A. U., Białecka-Florjańczyk E., 2013. Roślinne i mikrobiologiczne źródła antyutleniaczy. Postepy Hig. Med. Dosw. 67, 1359-1373.
  • Stöhr H., Herrmann K., 1975. The phenolics of fruits. VI. The phenolics of currants, gooseberries and blueberries. Changes in phenolic acids and catechins during development of black currants. Z. Lebensm-Unters Forsch. 159, 31-37.
  • Taylor L. P., Grotewold E., 2005. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8, 317-323.
  • Tohge T., Nishiyama Y., Hirai M. Y., Yano M., Nakaijama J. I., Awazuhara M., Inoue E., Takahashi H., Goodebowers D. B., Kitayama M., Yamazaki M., Saito K., 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcriptor factor. Plant J. 42, 218-235.
  • Torres R., Faioni F., Modak B., Urbina F., Labbe C., Guerrero J., 2006. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry 67, 984-987.
  • Triantaphylides C., Havaux M., 2009. Singlet oxygen in plants: production, detoxification and signalling. Trends Plant Sci. 14, 219-228.
  • Triantaphylide Ch., Krischke M., Hoeberichts F. A., Ksas B., Gresser G., Havaux M., Van Breusegem F., Mueller M. J., 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960-968.
  • Tsai S. M., Phillips D. A., 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57, 1485-1488.
  • Tsvetkova G., Teofilova T., Georgiev G. I., 2006. Effect of naringenin and quercetin activity of nod ABC genes of strain D293 and following nodulation and nitrogen fixation respose of inoculated pea plants (Pisum sativum L.). Gen. Appl. Plant Physiol., Special Issue, 67-71.
  • Wilczyńska A., Przybyłowski P., 2009. Charakterystyka związków fenolowych zawartych w miodach. Zesz. Nauk Akad Morskiej w Gdyni 61, 33-38.
  • Wiliams Ch. A., Grayer R.J., 2004. Anthocyjanins and other flavonoids. Natl. Prod. Rep. 21, 539-573.
  • Williams R. J., Spencer J. P. E., Rice-Evans C., 2004. Flavonoids: Antioxidants or signalling molecules? Free Rad. Med. 36, 838-849.
  • Winkel-Shirley B., 1999. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107, 142-149.
  • Yamasaki H., Sakihama N., Ikehara N., 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol. 115, 1405-1412.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv64p113kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.