PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 64 | 1 | 103-112
Article title

Regulacja tuberyzacji w ziemniaku

Content
Title variants
Languages of publication
PL EN
Abstracts
PL
Tuberyzacja, czyli tworzenie bulw, jest zasadniczym procesem biologicznym w rozwoju i plonowaniu roślin. Wytwarzanie bulw to złożony proces rozwojowy, na który składają się czynniki genetyczne, biochemiczne i środowiskowe. Długość dnia odgrywa kluczową rolę w mechanizmie zawiązywania bulw. W indukujących tuberyzację warunkach dnia krótkiego dochodzi do powstania cząsteczki sygnałowej, który transportowany do podziemnych części rośliny, stolonów, uruchamia tuberyzację. Istnieje wiele przesłanek świadczących o istnieniu genetycznych powiązań pomiędzy dwoma istotnymi dla ziemniaka procesami, tuberyzacji i kwitnienia. Elementami wspólnymi obu zjawisk jest odpowiedź na fotoperiod i udział cząsteczek sygnałowych przemieszczających się z liści do stolonów. Jeden z FT podobnych genów zidentyfikowany w ziemniaku pełni w mechanizmie tuberyzacji kluczową rolę podobną do roli genu FT w procesie kwitnienia. Dokładne poznanie mechanizmu tuberyzacji jest kluczowe w tworzeniu strategii hodowlanych mających na celu zwiększenie plonu bulw i poprawienie jego jakości.
EN
Tuberization is a biological process essential for production of potatos, the third most important food crop in the world. Tuberization is a complex, developmental process of potato which involves interactions between genetic, environmental and biochemical factors. Day length is critical for tuber formation. Under inductive condition of short day, a systemic signal is synthesized and transported to underground stolons to induce tuberization. There is evidence indicating the existence of a common genetic regulatory pathway of flowering and tuberization, the two most important processes in potato plant. These processes are similar in the response to photoperiod and involvement of phloem-mobile signals. One of FT-like genes identified in potato plays similar role as that FT in flowering control. Understanding of tuber formation is essential to create breeding strategies to improve tuber yield and quality.
Keywords
Journal
Year
Volume
64
Issue
1
Pages
103-112
Physical description
Dates
published
2015
References
  • Abdala G., Castro G., Miersch O., Pearce D., 2002.Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum). Plant Growth Regul. 36, 121-126.
  • Abelenda J. A., Navarro C., Prat S., 2011. From the model to the crop: genes controlling tuber formation in potato. Curr. Opin. Biotechnol. 22, 287-292.
  • Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Kossmann J., Willmitzer L., Romanov G. A. 2000. Transformed potato plants as a model for studying the hormonal and carbohydrate regulation of tuberization. Russ. J. Plant Physiol. 47, 370-379.
  • Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Gukasyan I. A., Gatz C., Romanov G. A., 2002. Tuber formation and growth of in vitro cultivated transgenic potato plants overproducing phytochrome B. Russ. J. Plant Physiol. 49, 478-483.
  • Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Sergeeva L. I., Romanov G. A., 2012. Hormonal Regulation of tuber formation in potato plants. Russ. J. Plant Physiol. 59, 451-466.
  • Aukerman M. J., Sakai H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.
  • Banerjee A. K., Chatterjee M., Yu Y., Suh S.-G., Miller W. A., Hannapel D. J., 2006. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457.
  • Bou-Torrent J., Martinez-Garcia J. F., Garcia-Martinez J. L., Prat S., 2011. Gibberellin A1 metabolism contributes to the control of photoperiod- mediated tuberization in potato. PLoS ONE DOI: 10.1371/journal.pone.0024458
  • Bü rglin T. R., 1997. Analysis of TALE superclass homeoboxgenes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucl. Acids Res. 25, 4173-4180.
  • Carrera E., Bou J., García-Martínez J. L., Prat S., 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J. 22, 247-256.
  • Chailakhyan M. K., Yanina L. I., Devedzhyan A. G., Lotova G. N., 1981. Photoperiodism and tuber formation in grafting of tobacco onto potato. Dok. Akad. Nauk. 257, 1276-1280.
  • Chen H., Rosin F. M., Prat S., Hannapel D. J., 2003. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol. 132, 1391-1404.
  • Chen H., Banerjee A. K., Hannapel D. J., 2004. The tandem complex of BEL and KNOX partners is required for transcriptional repression of GA20ox1 . Plant J. 38, 276-284.
  • Chincinska I. A., Liesche J., Krügel U., Michalska J., Geigenberger P., Grimm B., 2008. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol. 146, 515-528.
  • Chincinska I., Gier K., Krügel U., Liesche J., He H., Grimm B., 2013. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front. Plant Sci. 4, 1-12.
  • Claassens M. M. J.,Vreugdenhil D., 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res.43, 347-369.
  • Czyżewska D., Marczewski W., 2009. Metabolizm skrobi w bulwach ziemniaka. Post. Bioch. 55, 441-446.
  • Drobyazina P. E., Khavkin E. E., 2006. A structural homolog of CONSTANS in potato. Russ. J. Plant Physiol. 53, 698-701.
  • Drobyazina P. E., Khavkin E. E., 2011. The structure of two CONSTANS-LIKE1 genes in potato and its wild relatives. Gene 471, 37-44.
  • Ewing E. E., 1995. The role of hormones in potato ( Solanum tuberosum L.) tuberization . [W:] Plant Hormones: Physiology, Biochemistry and Molecular Biology. Davies P. J . (red.). Kluwer Academic, Dordrecht, 698- 724.
  • Ewing E. E., Struik P. C., 1992. Tuber formation in potato: induction, initiation and growth. Hortic. Rev. 14, 89-98.
  • Gabriel W., Świeżyński K. M., 1977. Hodowla ziemniaka. [W:] Hodowla i nasiennictwo ziemniaka. Gabriel W., Świeżyński K. M. (red.). Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 9-230.
  • González-Schain N. D., Díaz-Mendoza M., Żurczak M., Suárez-López P., 2012. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J. 70, 678-690.
  • Hannapel D. J., 2010. A model system of development regulated by the long-distance transport of mRNA. J. Integr. Plant Biol. 52, 40-52.
  • Haywood V., Kragler F., Lucas W.J., 2002. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14 (Suppl.), 303-325.
  • Haywood V., Yu T-S., Huang N.-C., Lucas W. J., 2005. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J. 42, 49-68.
  • Hedden P., Phillips A. L., 2000. Gibberellin metabolism: new insight revealed by genes. Trends Plant Sci. 5, 523-530.
  • Hussey G., Stacey N. J., 1984. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Ann. Bot. 53, 565-578.
  • Jackson S. D., 1999. Multiple signaling pathways control tuber induction in potato. Plant Physiol. 119, 1-8.
  • Jackson S. D., Heyer A., Dietze J., Prat S., 1996. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J. 9, 159-168.
  • Jackson S. D., James P. E., Carrera E., Prat S., Thomas B., 2000. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol. 124, 423-430.
  • Kloosterman B., Navarro C., Bijsterbosch G., Lange T., Prat S., Visser R. G. F. i współaut., 2007. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J. 52, 362-373.
  • Kloosterman B., Abelenda J. A., Gomez M. M. C., Oortwijn M., De Boer J. M., Kowitwanich K. i współaut., 2013. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495, 246-250.
  • Krauss A., 1985. Interaction of nitrogen nutrition, phytohormons and tuberization. [W:] Potato Physiology. Li P. H. (red.). London Academic, 209-231.
  • Kumar D., Wareing P. F., 1979. Studies on tuberizationof Solanum andigena. II. Growth, hormones and tuberization. New Phytol. 73, 833-840.
  • Lesińska M., Sekrecka D., 2007. Czynniki indukujące tuberyzację w warunkach in vitro - przegląd literatury. Biuletyn IHAR 243, 141-149.
  • Locke J. C., Southern M., Kozma-Bognar L., Hibberd V., Brown P. E., Turner M. S., Millar A. J., 2005. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Sys. Biol. 1, 1-9.
  • Martin A., Adam H., Díaz-Mendoza M., Żurczak M., González-Schain N. D., Suárez-López P., 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172 . Development 136, 2873-2881.
  • Martinez-Garcia J. F., Garcia-Martinez J. L., Bou J., Prat S., 2002. The Interaction of gibberellins and photoperiod in the control of potato tuberization. Plant Growth Regul. 20, 377-386.
  • Mauk C. S., Langille A. R., 1978. Physiology of tuberization in Solanum tuberosum L. cis zeatin riboside in potato plant. Its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiol. 62, 438-442.
  • Menzel C. M., 1980. Tuberization in potato in high temperatures. Response of gibberellin and growth inhibitors. Ann. Bot. 46, 259-265.
  • Nakamichi N., Kita M., Niinuma K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., Oyma T., 2005. Arabodopsis clock-associated pseudo-response regulators PRR9, PRR7, PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-depend photoperiodic pathway. Plant Cell Physiol. 48, 822-832.
  • Navarro C., Abelenda J. A., Cruz-Oró E., Cuéllar C. A., Tamaki S., Silva J. i współaut., 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119-122.
  • Obata-Sasamoto H., Suzuki H.,1979. Activities of enzymes relating to starch synthesis and endogenous levels of growth regulators in potato stolon tips during tuberization. Physiol. Plant. 45, 320-324.
  • Pelacho A. M., Mingo-Castel A. M., 1991. Jasmonic acid induces tuberization of potato stolons in vitro. Plant Physiol. 97, 1253-1255.
  • Palmer C. E., Barker W. G., 1973. Influence of ethylene and kinetin on tuberization of potato Solanum tuberosum L. stolons cultured in vitro. Ann. Bot. 37, 85-95.
  • Palmer C. E., Smith O. E., 1970. Effect of kinetin on tuber formation on isolated stolons of Solanum tuberosum L. cultured in vitro. Plant Cell Physiol. 11, 303-314.
  • Puterill J., Robson F., Lee K., Simon R., Coupland G., 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
  • Rodriguez-Falcon M., Bou J., Prat S., 2006. Seasonal control of tuberization in potato: conserved elements with the flowering response. Annu. Rev. Plant Biol. 57, 151-180.
  • Romanov G. A., 2009. How do cytokinins affect the cell? Russ. J. Plant Physiol. 56, 269-290.
  • Romanov G. A., Aksenova N. P., Konstantinova T. N.,Golyanovskaya S. A., Kossmann J., Willmitzer L., 2000. Effect of indole-3-acetic acid and kinetin on tubeization parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regul. 32, 245-251.
  • Rosin F. M., Hart J. K., Horner H. T., Davies P. J., Hannapel D. J., 2003. Overexpression of a Knotted -like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol. 132, 106-117.
  • Ryabov E. V., Robinson D. J., Taliansky M. E., 1999. A plant virus-encoded protein facilities long distance movement of heterologous viral RNA. Proc. Natl. Acad. Sci. USA 96, 1212-1217.
  • Sarkar D., 2008. The signal transduction pathways controlling in plant tuberization in potato: an emerging synthesis. Plant Cell Rep. 27, 1-8.
  • Sarkar D., Pandey S. K., Sharma S., 2006. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum L.) tuber formation invitro. Plant Cell Tissue Organ Cult. 87, 285-295.
  • Sawa M., Nusinow D., Kay S., Immaizumi T., 2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265.
  • Sheen J., Zhou L., Jang J.-C., 1999. Sugars as signaling molecules. Curr. Opin. Biol. 2, 410-418.
  • Suárez-López P., 2005. Long-range signaling in plant reproductive development. Int. J. Dev. Biol. 49, 761-771.
  • Suárez-López P., 2013. A critical appraisal of phloem-mobile signals involved in tuber formation induction. Front. Plant Sci. 4, 1-7.
  • Tauberger E., Fernie A. R., Emmermann M., Renz A., Kossman J., Willmitzer L., Trthewey R. N., 2000. Antisense inhibition of plastdial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J. 23, 43-53.
  • Taylor M. A., George L. A., Davies H. V., 1998. cDNA cloning and characterization of an α-glucosidase gene from potato (Solanum tuberosum L.). Plant J. 13, 419-425.
  • Thiele A., Herold M., Lenk J., Quail P. H., Gatz C., 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 120, 73-81.
  • Van Den Berg J. H., Simko J., Davies P. J., Ewing E. E., Halinska A., 1995. Morphology and [14C]gibberellin A12 metabolism in wild-type and dwarf Solanum tuberosum ssp. andigena growth under long and short photoperiods. J. Plant Physiol. 146, 467-473.
  • Visker M. H., Keizer L. C., Van Eck H. J., Jacobsen E., Colon L. T., Struik P. C., 2003. Can QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor. Appl. Genet. 106, 317-325.
  • Wareing P. F., Jennings A. M. V., 1980. The hormonal control of tuberization in potato. [W:] Plant Growth Substances. Skoog F. (red.). Springer-Verlag, New York, 293-300.
  • Xu X., Van Lammeren A., Verner E., Vreugdenhil D., 1998. The role of gibberellin, abscisic acid and sucrose in the regulation of potato tuber formation in vitro . Plant Physiol. 117, 575-584.
  • Yano M., Katayose Y., Ashikari M., 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2483.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv64p103kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.