Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 4 | 643-655

Article title

Jadowite ssaki.

Content

Title variants

EN
Venomous mammals.

Languages of publication

PL EN

Abstracts

PL
W niniejszym artykule dokonujemy przeglądu jadowitych ssaków, z uwzględnieniem "swoiście jadowitych" (takich jak należący do rzędu stekowców dziobak australijski i zaliczane do rzędu ryjówkokształtnych almiki, ryjówki krótkoogonowe, rzęsorki i jeden gatunek zębiełka), "nieswoiście jadowitych" (nietoperze wampiry) i przypuszczalnie jadowitych (kilka gatunków lori z rzędu naczelnych). Fakt, iż pewne ssaki mogą być jadowite przez wieki ignorowany był przez środowisko naukowe. Dopiero w latach 50-tych ubiegłego wieku podjęto (między innymi przez polskich badaczy) pierwsze próby określenia właściwości jadów niektórych gatunków. Ostatnimi czasy, rozwój nowoczesnych technik umożliwiających rozdział jadów przyczynił się do ponownego wzrostu zainteresowania tą grupą zwierząt i umożliwił badaczom poznanie pierwszych składników występujących w ich jadach. Nie mniej jednak badania nad jadami ssaków są ciągle w fazie wstępnej. W artykule przedstawiamy stan poznania właściwości oraz funkcji jadów wytwarzanych przez jadowite ssaki oraz wskazujemy na możliwości zastosowania niektórych z tych jadów w leczeniu wielu chorób i produkcji leków. Możliwe bowiem, że w najbliższym czasie poznamy dokładniej właściwości lecznicze substancji zawartych w jadach ssaków. A wtedy zapewne wiele z tych substancji, jak wcześniej składniki jadów pająków, pszczół czy węży, znajdzie zastosowanie w farmakologii czy medycynie.
EN
This article presents "specific venomous" mammals (Australian platypus, two species of the genus Solenodon, and shrews of the genera Blarina, Neomys and Crocidura), "non-specific venomous" ones (three species of vampire bats), and "presumably venomous" mammals (several species of the genus Nycticebus). For centuries there has been a widespread belief that mammals could be as venomous as reptiles. However, this belief remained overlooked by orthodox scientists and was treated as a folklore. Nevertheless, already in the 1950s the first attempts to determine the properties of venoms of the short-tailed shrew (Blarina brevicauda) and water shrew (Neomys fodiens) were undertaken (among others, by Polish scientists). Recently, the development of modern techniques of venom separation has contributed to the renewed interest in venomous mammals and allowed to discover the first components of their venoms. Nevertheless, these studies are still at a preliminary stage. This article reviews our knowledge about the properties and functions of mammal venoms and shows the possibilities of their use in medical treatment and production of drugs. It is likely that in the near future we will learn more about the healing properties of these venoms. Thus, it is also possible that many of these substances, similarly to components of the venoms of spiders, bees or snakes, will have a number of applications in pharmacology and medicine.

Keywords

Journal

Year

Volume

63

Issue

4

Pages

643-655

Physical description

Dates

published
2014

Contributors

  • Uniwersytet im. Adama Mickiewicza, Wydział Biologii, Zakład Zoologii Systematycznej, Umultowska 89, 61-614 Poznań, Polska
  • Uniwersytet im. Adama Mickiewicza, Wydział Biologii, Zakład Zoologii Systematycznej, Umultowska 89, 61-614 Poznań, Polska

References

  • Alterman L., 1990. Isolation of toxins from brachial gland exudates from Nycticebus coucang. Am. J. Phys. Anthropol. 81, 187.
  • Alterman L., Hale M. E., 1991. Comparisons of toxins from brachial gland exudates of Nycticebus coucang and N. pygmaeus. Am. J. Phys. Anthropol. 12 (Suppl.), 43.
  • Apitz-Castro R., Béguin S., Tablante A., Bartoli F., Holt J. C., Hemker H. C., 1995. Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmodus rotundus). Thrombos. Haemostas. 73, 94-100.
  • Basanova A. V., Baskova I. P., Zavalova L. I., 2002. Vascular-platelet and plasma hemostasis regulators from bloodsucking animals. Biochemistry (Moscow) 67, 143-150.
  • Büchler W., 1968. Introduction. [W:] Venomous animals and their venoms. Büchler W., Buckley E. E., Deulofeu V. (red.). Academic Press, New York, 9-12.
  • Calaby J. H., 1968. The platypus (Ornithothynchus anatinus) and its venoms characteristics. [W:] Venomous animals and their venoms. Büchler W., Buckley E. E., Deulofeu V. (red.). Academic Press, New York, 15-30.
  • Chen J.-H., Pan D., Groves C., Wang Y.-X., Narushima E., Fitch-Snyder H., Crow P., Thanh V. N., Ryder O., Zhang H.-W., Fu Y., Zhang Y., 2006. Molecular phylogeny of Nycticebus inferred from mitochondrial genes. Int. J. Primatol. 27, 1187-1200.
  • Clark R. J., Jensen J., Nevin S. T., Callaghan B. P., Adams D. J., Craik D. J., 2010. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angewandte Chem. Intern. Ed. 49, 6545-6548.
  • Coborn J., 1993. Atlas węży świata. Muza, Warszawa.
  • Cuenca-Bescós G., Rofes J., 2007. First evidence of poisonous shrews with an envenomation apparetus. Naturwissenschaften 94, 113-116.
  • Delpietro H. A., Russo R. G., 2009. Acquired resistance to saliva anticoagulants by prey previously fed upon by vampire bats (Desmodus rotundus): evidence for immune response. J. Mammal. 90, 1132-1138.
  • DiSanto P. E., 1960. Anatomy and histochemistry of the salivary glands of the vampire bat, Desmodus rotundus murinus. J. Morphol. 106, 301-335.
  • Dufton M. J., 1992. Venomous mammals. Pharmacol. Therapeut. 53, 199-215.
  • Fry B. G., Roelants K., Champagne D. E., Schieb H., Tyndall J. D., King G. F., Nevalainen T. J., Norman J. A., Lewis R. J., Norton R. S., Renjifo C., de la Vega R. C., 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Ann. Rev. Genom. Human Genet. 10, 483-511.
  • Fry B. G., Casewell N. R., Wüster W., Vidal N., Young B., Jackson T. N. W., 2012. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 60, 434-448.
  • Furio M., Agusti J., Mouskhelishvili A., Sanisidro Ó., Santos-Cubedo A., 2010. The paleobiology of extinct venomous shrew Beremendia (Soricidae, Insectivora, Mammalia) in relation to the geology and paleoenvironment of Dmanisi (Early Pleistocene, Georgia). J. Vertebr. Paleontol. 30, 928-942.
  • Gomes A., Biplab G., Saha A., Mishra R., Dasgupta S. C., Debnath A., Gomes A., 2007. Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potentials for possible drug development. Ind. J. Exp. Biol. 45, 579-593.
  • Grudzień J., 2011. Wstępne badania nad składem jadów ropuchy szarej (Bufo bufo) i rzęsorka rzeczka (Neomys fodiens). Praca magisterska. Biblioteka Wydziału Biologii UAM, Poznań.
  • Hagey L. R., Fry B. G., Fitch-Snyder H., 2007. Talking defensively: a dual use for the brachial gland exudate of slow and pygmy lorises. [W:] Primate anti-predatory strategies, vol. 2. Gurskiy S., Nekaris K. A. I. (red.). Springer, New York, 253-272.
  • Hawkey C., 1966. Plasminogen activator in saliva of the vampire bat Desmodus rotundus. Nature 211, 434-435.
  • Hofmann J. E., 2008. Field Manual of Illinois Mammals. Illinois Natural History Survey, Champaign, Illinois.
  • Jared C., Antoniazzi M. M., Jordão A. E. C., Silva J. R. M. C., Greven H., Rodrigues M. T., 2009. Parotoid macroglands in toad (Rhinella jimi): their structure and functioning in passive defence. Toxicon 54, 197-207.
  • Kita M., Okumura Y., Ohdachi S. D., Oba Y., Yoshikuni M., Kido H., Uemura D., 2004. Blarina toxin, a mammalian lethal venom from the short-tailed shrew Blarina brevicauda: isolation and characterization. Proc. Natl. Acad. Sci. USA 101, 7542-7547.
  • Kita M., Okumura Y., Ohdachi S. D., Oba Y., Yoshikuni M., Nakamura Y., Kido H., Uemura D., 2005. Purification and characterisation of blarinasin, a new tissue kallikrein-like protease from the short-tailed shrew Blarina brevicauda: comparative studies with blarina toxin. Biol. Chem. 386, 177-182.
  • Kourie J. I., 1999. Characterization of a C-type natriuretic peptide (CNP-39)-formed cation selective channel from platypus (Ornithorhynchus anatinus) venom. J. Physiol. 518, 359-369.
  • Kowalski K., 1964. Klucze do oznaczania kręgowców Polski. Część V. Ssaki - Mammalia. Państwowe Wydawnictwo Naukowe, Warszawa.
  • Kubczak M., 2011. Różnice we właściwościach kardioaktywnych jadów ropuchy szarej (Bufo bufo) i rzęsorka rzeczka (Neomys fodiens). Praca magisterska, Biblioteka Wydziału Biologii UAM, Poznań.
  • Krane S., Itagaki Y., Nakanishi K., Weldon P. J., 2003. 'Venom' of the slow loris: sequence similarity of prosimian skin gland protein and Fel d 1 cat allergen. Naturwissenschaften 90, 60-62.
  • Krause W. J., 2009. Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhynchus anatinus). Cells Tiss. Organ. 191, 336-354.
  • Krätzschmar J., Haendler B., Langer C., Boidol W., Bringmann P., Alagon A., Donner P., Schleuning W. D., 1991. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: cloning and expression. Gene 105, 229-237.
  • Laerm J., Ford W. M., Chapman B. R., 2007. Southern short-tailed shrew Blarina carolinensis (Bachman, 1837). [W:] The Land Manager's Guide to Mammals of the South. Trani M. K., Ford W. M., Chapman B. R. (red.). USDA Forest Service & The Nature Conservancy, Southeastern Region, Durham, North Carolina, USA, 70-74.
  • Ligabue-Braun R., Verli H., Carlini C. R., 2012. Venomous mammals: A review. Toxicon 59, 680-695.
  • Lopez-Jurado L. F., Mateo J. A., 1996. Evidence of venom in the Canarian shrew (Crocidura canariensis): immobilizing effects on the Atlantic lizard (Gallotia atlantica). J. Zool. 239, 394-395.
  • Lorenz K. Z., 1952. The taming of the shrew. [W:] King Salomon's ring. New light on animal ways. Lorenz K. Z. (red.). Metheun & Co. Ltd., London, 92-113.
  • Machado-Santos C., Nascimento A. A., Peracchi A. L., Mikalauskas J. S., Rocha P. A., Sales A., 2009. Distribution of the endocrine cells in the gastroinestinal tract of nactarivorous and sanguivorous bats: a comparative immunocytochemical study. Tiss. Cell 41, 222-229.
  • Martin I. G., 1981. Venom of the short-tailed shrew (Blarina brevicauda) as an insect immobilizing agent. J. Mammal. 62, 189-192.
  • Mebs D., 1999. Studies on biological and enzymatic activities of salivary glands from the European hedgehog (Erinaceus europaeus). Toxicon 37, 1635-1638.
  • Mebs D., 2002. Venomous and poisonous animals. Medpharm, Stuttgart.
  • Munds R. A., Nekaris K. A. I., Ford S. M., 2013. Taxonomy of the Bornean Slow Loris, with new species Nycticebus kayan (Primates, Lorisidae). Am. J. Primatol. 75, 46-56.
  • Nekaris K. A. I., Jaffe S., 2007. Unexpected diversity of slow lorises (Nycticebus ssp.) within the Javan pet trade: implications for slow loris taxonomy. Contribut. Zool. 76, 187-196.
  • Nekaris K. A. I., Moore R. S., Rode E. J., Fry B. G., 2013. Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. J. Venom. Animal Tox. Include. Tropic. Diseas. 19, 21-30.
  • Paciaroni M., Medeiros E., Bogousslavsky J., 2009. Desmoteplase. Expert Opin. Biol. Therap. 9, 773-778.
  • Pałgan K., Kartuzi Z., 2009. Właściwości biologiczne jadu pszczół. Artykuły przeglądowe 14, 17-19.
  • Pearson O. P., 1942. On the cause and nature of a poisonous action produced by the bite of a shrew (Blarina brevicauda). J. Mammal. 23, 159-166.
  • Pearson O. P., 1950. The submaxillary glands of shrews. Anat. Record 107, 161-165.
  • Persson L., 1985. Asymmetrical competition: are larger animals competitively superior? Am. Natural. 126, 261-266.
  • Pournelle G. H., 1968. Classification, biology, and description of the venom apparatus of insectivores of the genera Solenodon, Neomys, and Blarina. [W:] Venomous animals and their venoms. Bücherl W., Buckley E. E., Deulofeu V. (red.). Academic Press, New York, 31-42.
  • Pucek M., 1959. The effect of the venom of the European water shrew (Neomys fodiens fodiens Pennant) on certain experimental animals. Acta Theriol. 3, 93-108.
  • Pucek M., 1969. Neomys anomalus Cabrera, 1907 - a Venomous Mammal. Bull. De L'Académie Polonaise Des Sci. 17, 569-573.
  • Pucek Z., 1984. Klucz do oznaczania ssaków Polski. Wydanie drugie zmienione i poprawione. Państwowe Wydawnictwo Naukowe, Warszawa.
  • Rabb G. B., 1959. Toxic salivary glands in the primitive insectivore Solenodon. Nat. Hist. Miscellanea 190, 1-3.
  • Rode E. J., Nekaris K. A. I., 2012. Ectoparasites and anting in lorises. Primate Eye 104, 19.
  • Rychlik L., 1999a. Changes in prey size preferences during successive stages of foraging in the Mediterranean water shrew Neomys anomalus. Behaviour 136, 345-365.
  • Rychlik L., 1999b. Food handling by the gregarious Mediterranean water shrew Neomys anomalus. Folia Zool. 48, 161-172.
  • Rychlik L., Jancewicz E., 2002. Prey size, prey nutrition, and food handling by shrews of different body sizes. Behav. Ecol. 13, 216-223.
  • Shi J., Liu T.-T., Wang X., Epstein D. H., Zhao L.-Y., Zhang X.-L., Lu L., 2009. Tetrodotoxin reduces cue-induced drug craving and anxiety in abstinent heroin addicts. Pharmacol. Biochem. Behav. 92, 603-607.
  • Skoczeń S., 1970. Gromadzenie zapasów pokarmowych przez niektóre ssaki owadożerne (Insectivora). Przegląd Zoologiczny 14, 243-248.
  • Swapna N., Radhakrishna S., Gupta A. K., Kumar A., 2010. Exudativory in the Bengal Slow Loris (Nycticebus bengalensis) in Trishna Wildlife Sanctuary, Tripura, Northeast India. Am. J. Primatol. 72, 113-121.
  • Thomasi E. T., 1978. Function of venom in the short-tailed shrew, Blarina brevicauda. J. Mammal. 59, 852-854.
  • Thompson C. W., Choate J. R., Genoways H. H., Finck E. I., 2011. Blarina hylophaga (Soricomorpha: Soricidae). Mammal. Spec. 43, 94-103.
  • Thorpe R. S., Wüster W., Malhotra A., 1999. Venomous snakes: ecology, evolution and snakebite. Zoological Society of London, London.
  • Tonkin M. A., Negrine J., 1994. Wild platypus attack in the antipodes: a case report. J. Hand Surg. 19B, 162-164.
  • Torres A. M., de Plater G. M., Doverskog M., Birinyi-Strachan L. C., Nicholson G. M., Gallagher C. H., Kuchel P. W., 2000. Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold. Biochem. J. 348, 649-656.
  • Whittington C. M., Koh J. M., Warren W. C., Papenfuss A. T., Torres A. M., Kuchel P. W., Belov K., 2009. Understanding and utilising mammalian venom via a platypus venom transcriptome. J. Proteom. 72, 155-164.
  • Whittington C. M., Papenfuss A. T., Locke D. P., Mardis E. R., Wilso R. K., Abubucker S., Mitreva M., Wong E. S. W., Hsu A. L., Kuchel P. W., Belov K., Warren W. C., 2010. Novel venom gene discovery in the platypus. Genome Biol. 11, R95.
  • Wiens F., Zitzmann A., 2003. Social structure of the solitary slow loris Nycticebus coucang (Lorisidae). J. Zool. (London) 261, 35-46.
  • Wilde H., 1972. Anaphylactic shock following bite by a 'Slow loris', Nycticebus coucang. Am. J. Trop. Med. Hyg. 21, 592-594.
  • Wilson D. E., Reeder D. M., 2005. Mammal species of the World. A taxonomic and geographic reference. Johns Hopkins University Press, Baltimore.
  • Wong E. S. W., Nicol S., Warren W. C., Belov K., 2013. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom. PLoS ONE 8, e79092.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p643kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.