Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 4 | 591-601

Article title

Nowa hipoteza wzrostu promieniowego i przebudowy kambium waskularnego roślin drzewiastych.

Content

Title variants

EN
The new hypothesis of radial growth and rearrangement of vascular cambium of arborescent plants.

Languages of publication

PL EN

Abstracts

PL
Ogólnie przyjęty sposób opisu wzrostu promieniowego i przebudowy układu inicjałów kambium waskularnego nie wyjaśnia wystarczająco współwystępowania oraz roli takich zdarzeń, jak wzrost intruzywny i eliminacje inicjałów, a także procesu tworzenia struktury piętrowej oraz szybkiej zmiany orientacji inicjałów kambium. W niniejszym artykule poddano analizie udział wymienionych procesów komórkowych we wzroście promieniowym i obwodowym kambium oraz w przebudowie układu inicjałów, w oparciu o klasyczne, jak i najnowsze doniesienia. Przedstawiono podstawowe założenia nowej, tigmo-osmotycznej hipotezy wzrostu promieniowego, wyjaśniającej w spójny sposób występowanie wzrostu intruzywnego inicjałów jako zasadniczego mechanizmu przebudowy układu komórek kambium. Obserwacje ostatnich kilkunastu lat wskazują na występowanie wzrostu intruzywnego pomiędzy ścianami stycznymi, a nie promieniowymi, co było powszechnie przyjęte. Taka lokalizacja wzrostu intruzywnego wyjaśnia, dlaczego wzrost intruzywny i eliminacje są dwoma przejawami tego samego procesu. W przeciwieństwie do powszechnie przyjętego poglądu zarówno wzrost intruzywny, jak i eliminacje, nie biorą udziału we wzroście obwodowym i są związane wyłącznie z przebudową układu inicjałów kambium.
EN
The common description of radial growth and vascular cambial initials' rearrangement does not sufficiently explain the co-occurrence and the role of cell events, such as intrusive growth and elimination of initials, as well as formation of storeyed pattern and rapid changes in orientation of cambial initials. In this paper participation of such cell events in radial and circumferential growth of cambium and in cambial initials' rearrangement is analyzed on the basis of both classic and recent reports. There are presented basic assumptions of the new, tigmo-osmotic hypothesis of radial growth, which explains in a coherent way the occurrence of intrusive growth of initials, being the key mechanism of cambial initials' rearrangement. Observations from last several years indicate the occurrence of intrusive growth between tangential walls, instead of radial ones - what has been commonly accepted. The new localization of intrusive growth explains why the intrusive growth and eliminations are two manifestations of the same process. Contrary to general opinion, neither intrusive growth nor eliminations do not take part in cambial circumference increment and are related with cambial initials' rearrangement exclusively.

Keywords

Journal

Year

Volume

63

Issue

4

Pages

591-601

Physical description

Dates

published
2014

Contributors

author
  • Samodzielna Katedra Biosystematyki, Uniwersytet Opolski, Oleska 22, 40-052 Opole, Polska
  • Samodzielna Katedra Biosystematyki, Uniwersytet Opolski, Oleska 22, 40-052 Opole, Polska
author
  • Samodzielna Katedra Biosystematyki, Uniwersytet Opolski, Oleska 22, 40-052 Opole, Polska
  • Samodzielna Katedra Biosystematyki, Uniwersytet Opolski, Oleska 22, 40-052 Opole, Polska

References

  • Ajmal S., Khan R., Iqbal M., 1986. Cambial structure of Holoptelea integrifolia PLANCH in relation to age. Flora 178, 197-202.
  • Alméras T., 2008. Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance. Tree Physiol. 28, 1513-1523.
  • Alméras T., Yoshida M., Okuyama T., 2006. Strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure. Trees 20, 460-467.
  • Bailey I. W., 1923. The cambium and its derivative tissues IV. The increase in girth of the cambium. Am. J. Bot. 10, 499-509.
  • Bannan M. W., 1950. The frequency of anticlinal divisions in fusiform cambial cells of Chamaecyparis. Am. J. Bot. 37, 511-519.
  • Bannan M. W., 1952. Further observations on the reduction of fusiform cambial cells in Thuja occidentalis L. Can. J. Bot. 31, 63-74.
  • Bannan M. W., 1968 . Anticlinal divisions and the organization of the conifer cambium. Bot. Gaz. 129, 107-113.
  • Bannan M. W., Bayly I. L., 1956. Cell size and survival in conifer cambium. Can. J. Bot. 34, 769-776.
  • Barnett J. R., 1992. Reactivation of the cambium in Aesculus hippocastanum L.: A transmission microscope electron study. Ann. Bot. 70, 169- 177.
  • Brown C. L., 1964. The influence of external pressure on the differentiation of cells and tissues cultured in vitro. [W:] The Formation of Wood in Forest Trees. Zimmermann M. H. (red.). N.Y. Academic Press, 389-404.
  • Butterfield B. G., 1972. Developmental changes in the vascular cambium of Aeschynomene hispida Willd. NZ J. Bot. 10, 373-386.
  • Carlquist S., 1988. Comparative wood anatomy. [W:] Springer series in wood anatomy. Timell T. E. (red.). Springer-Verlag, Berlin.
  • Catesson A. M., 1990. Cambial cytology and biochemistry. [W:] The vascular cambium. Iqbal M. (red.). Research Studies Press, Taunton, UK, 63-112.
  • Catesson A. M., Roland J. C., 1981. Sequential changes associated with cell wall formation. IAWA Bull. 2, 151-162.
  • Cumbie B. G., 1963. The vascular cambium and xylem development in Hibiscus lasiocarpus. Am. J. Bot. 50, 944-951.
  • Cumbie B. G., 1967. Developmental changes in the vascular cambium of Leitneria floridana. Am. J. Bot. 54, 414-424.
  • Cumbie B. G., 1984. Origin and development of the vascular cambium in Aeschynomene virginica. Bull. Torrey Bot. Club 111, 42-50.
  • Errera L., 1888. Über zellformen und seifenblasen. Bot. Centralbl. 34, 395-398.
  • Evert R. F., 1961. Some aspects of cambial development in Pyrus communis. Am. J. Bot. 48, 479-488.
  • Evert R. F., 2006. Esau's plant anatomy; Meristems, cells and tissues of the plant body; their structure, function and development. Wiley, Hoboken.
  • Forest L., Demongeot J., 2006. Cellular modeling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don). Bull. Math. Biol. 68, 753-784.
  • Harris J. M., 1989. Spiral grain and wave phenomena in wood formation. Springer-Verlag, Berlin.
  • Hejnowicz Z., 1961. Anticlinal divisions, intrusive growth and loss of fusiform initials in nonstoried cambium. Acta Soc. Bot. Pol. 30, 729-758.
  • Hejnowicz Z., 1968. The structural mechanism involved in the changes of grain in timber. Acta Soc. Bot. Pol. 37, 347-365.
  • Hejnowicz Z., 1980. Tensional stress in the cambium and its developmental significance. Am. J. Bot. 67, 1-5.
  • Hejnowicz Z., 1984. Trajectories of principal directions of growth, natural coordinate system in growing plant organ. Acta Soc. Bot. Pol. 53, 301-316.
  • Hejnowicz Z., 1997. Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203, S136-S146.
  • Hejnowicz Z., 2012. Anatomia i histogeneza roślin naczyniowych. Organy wegetatywne. Wydawnictwo Naukowe PWN, Warszawa.
  • Hejnowicz Z., Brański S., 1966. Quantitative analysis of cambium growth in Thuja. Acta Soc. Bot. Pol. 35, 395-400.
  • Hejnowicz Z., Zagórska-Marek B., 1974. Mechanism of changes in grain inclination in wood produced by storeyed cambium. Acta Soc. Bot. Pol. 43, 381-398.
  • Hofmeister W., 1863. Zusätze und Berichtigungen zu den 1851 veröffentlichten Untersuchungen der Entwicklung höherer Krytogamen. Jahrb. Wiss. Bot. 3, 259-293.
  • Iqbal M., 1990. The vascular cambium. Wiley, New York.
  • Iqbal M., 1994. Structural and operational specializations of the vascular cambium of seed plants. [W:] Growth patterns in vascular plants. Iqbal M. (red.). Dioscorides Press, Portland, 211-271.
  • Iqbal M., Kojs P., Włoch W., Szendera W., Jura J., 2005. Presence of storeyed cambium in trees of the tropical rain forests: an adaptative strategy. [W:] Materiały XVII Int. Bot. Congr., Vienna.
  • Jura J., Kojs P., Iqbal M., Szymanowska-Pułka J., Włoch W., 2006. Apical intrusive growth of cambial fusiform initial along the tangential walls of adjacent fusiform initials: evidence for a new concept. Aust. J. Bot. 54, 493-504.
  • Karczewska D., Karczewski J., Włoch W., Jura-Morawiec J., Kojs P., Iqbal M., Krawczyszyn J., 2009. Mathematical modelling of intrusive growth of fusiform initials in relation to radial growth and expanding cambial circumference in Pinus sylvestris L. Acta Biotheor. 57, 331-348.
  • Klepper B., 1968. Diurnal pattern of water potential in woody plants. Plant Physiol. 43, 1931-1934.
  • Kojs P., Rusin T., 2011. Diurnal strains in plants. [W:] Encyclopedia of agrophysics. Gliński J., Horabik J., Lipiec J. (red.). Springer, Berlin, 220-224.
  • Kojs P., W. Włoch, A. Rusin, W. Szendera, J. Duda, J. Jura, Rusin T., 2002. Od niefunkcjonalnej do funkcjonalnej piętrowości. Modele piętrowości. Bull. Bot. Gardens 11, 93-104.
  • Kojs P., Włoch W., Rusin A., Szendera W., 2003. Storeyed structure of cambium as an adaptative strategy to environmental conditions in trees forming canopy and the emergent layer of the tropical rain forests. Bull. Bot. Gardens 12, 23-29.
  • Kojs P., Włoch W., Rusin A., 2004a. Rearrangement of cells in storeyed cambium of Lonchocarpus sericeus (Poir.) DC. connected with formation of interlocked in the xylem. Trees 18, 136-144.
  • Kojs P., Włoch W., Iqbal M., Rusin A., Jura J., 2004b. Readjustment of cambial initials in Wisteria floribunda (Willd.) DC to ensure the development of storeyed structure. New Phytol. 163, 287-297.
  • Krawczyszyn J., 1977. The transition from non-storeyed to storeyed cambium in Fraxinus excelsior. 1. The occurrence of radial anticlinal divisions. Can. J. Bot. 55, 3034-3041.
  • Kwiatkowska D., Nakielski J., 2011. Mechanics of the meristems. [W:] Mechanical integration of plant cells and plants. Wojtaszek P. (red.). Springer, Heidelberg, 133-172.
  • Larson P. R., 1994. The vascular cambium: development and structure. Springer series in wood science. Springer, New York.
  • Lev-Yadun S., 2001. Intrusive growth - the plant analog of dendrite and axon growth in animals. New Phytol. 150, 508-512.
  • Lim D., Soh W. Y., 1997a. Cambial development and tracheid length of Dwarf Pines (Pinus densiflora and P. thunbergii). IAWA J. 18, 301-310.
  • Lim D., Soh W. Y., 1997b. Development of cambium and length of vessel elements and fibres in dwarf Alnus hirsuta (Spach) Rupr. J. Plant Biol. 40, 245-248.
  • Lintilhac P. M., Vesecky T. B., 1984. Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307, 363-364.
  • Lynch T. M., Lintilhac P. M., 1997. Mechanical signals in plant development: a new method for single cell studies. Dev. Biol. 181, 246-256.
  • Mahmood A., 1968. Cell grouping and primary wall generations in the cambial zone, xylem, and phloem in Pinus. Austr. J. Bot. 16, 177-195.
  • Matar D., Catesson A. M., 1988. Cell plate development and delayed formation of the pectic middle lamella. Protoplasma 146, 10-17.
  • Miodek A., Gizińska A., Wilczek A., Włoch W., 2013. Growth of wood fibers in circular-symmetrical annual xylem increment. [W:] Interdyscyplinarne i aplikacyjne znaczenie nauk botanicznych: streszczenia wystąpień ustnych i plakatów 56. Zjazdu Polskiego Towarzystwa Botanicznego. Biedunkiewicz A., Dynowska M. (red.). MANTIS, Olsztyn, 114-115.
  • Molz F. J., Klepper B., 1973. On the mechanism of water-stress-induced stem deformation. Agronom. J. 65, 304-306.
  • Rao K. S., Dave Y. S., 1985. Seasonal variations in the vascular cambium of Holoptelea integrifolia (Ulmaceae). Beitr. Biol. Pflanz. 59, 321- 331.
  • Roland J. C., 1978. Early differences between radial walls and tangential walls of actively growing cambial zone. IAWA Bull. 1978, 7-10.
  • Srivastava L. M., 1973. Cambial activity in trees. Arnoldia 33, 46-66.
  • Wenham M. W., Cusick F., 1975. The growth of secondary wood fibers. New Phytol. 74, 247-261.
  • Wilczek A., 2012. The formation of heterogeneous storeys in cambium on example of Laburnum anagyroides Medik. Acta Agrobotan. 65, 47-56.
  • Wilczek A., Jura-Morawiec J., Kojs P., Iqbal M., Włoch W., 2011a. Correlation of intrusive growth of cambial initials to rearrangement of rays in vascular cambium. IAWA J. 32, 313-332.
  • Wilczek A., Włoch W., Iqbal M., Kojs P., 2011b. Position of rays and lateral deviation of vessel elements in the stem wood of some dicotyledonous species with storeyed, doublestoreyed, and nonstoreyed cambia. Botany 89, 849-860.
  • Włoch W., 1976. Cell events in cambium, connected with the formation and existence of a whirled cell arrangement. Acta Soc. Bot. Pol. 45, 313-326.
  • Włoch W., Połap E., 1994. Zdarzenia komórkowe i ich lokalizacja w trakcie tworzenia wzoru domenowego w kambium Tilia cordata Mill. Acta Soc. Bot. Pol. 63, 215-228.
  • Włoch W., Mazur E., Kojs P., 2001. Intensive change of inclination of cambial initials in Picea abies (L.) Karst. tumours. Tress 15, 498-502.
  • Włoch W., Mazur E., Bełtowski M., 2002. Formation of spiral grain in the wood of Pinus sylvestris L. Trees 16, 306-312.
  • Włoch W., Jura-Morawiec J., Kojs P., Iqbal M., Krawczyszyn J., 2009. Does intrusive growth of fusiform initials really contribute to circumferential growth of vascular cambium? Botany 87, 154-163.
  • Włoch W., Wilczek A., Jura-Morawiec J., Kojs P., Iqbal M., 2013. Modelling for rearrangement of fusiform initials during radial growth of the vascular cambium in Pinus sylvestris L. Trees 27, 879-893.
  • Zagórska-Marek B., 1984. Pseudotransverse divisions and intrusive elongation of fusiform initials in the storied cambium of Tilia. Can. J. Bot. 62, 20-27.
  • Zimmermann M. H., 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Heidelberg, New York.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p591kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.